Identification of flutter derivatives of bridge decks

An identification method has been developed to extract all the flutter derivatives defined by R.H. Scanlan. In the present work, the signals of the coupled vertical–torsional free vibration of the spring-suspended section model are used. The flutter derivatives of a thin plate obtained using the pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of wind engineering and industrial aerodynamics 2000-01, Vol.84 (2), p.151-162
Hauptverfasser: Gu, Ming, Zhang, Ruoxue, Xiang, Haifan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 162
container_issue 2
container_start_page 151
container_title Journal of wind engineering and industrial aerodynamics
container_volume 84
creator Gu, Ming
Zhang, Ruoxue
Xiang, Haifan
description An identification method has been developed to extract all the flutter derivatives defined by R.H. Scanlan. In the present work, the signals of the coupled vertical–torsional free vibration of the spring-suspended section model are used. The flutter derivatives of a thin plate obtained using the present method are compared with the corresponding Theodorsen theoretical values. The present method is then used in the identification of flutter derivatives of the Jiangyin suspension Bridge over Yangtze River. The flutter critical wind speed of this bridge obtained from the full bridge aeroelastic model test in a wind tunnel shows good agreement with the estimated result from Scanlan's flutter analysis method with the flutter derivatives using the present method.
doi_str_mv 10.1016/S0167-6105(99)00051-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746239126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167610599000513</els_id><sourcerecordid>27255298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-7efc1199f2a0f3660c3829108378b6e8337f5ccc12e08d3faeba3f60d9b5f13</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKs_QejKx2I0N5m8ViLFR6Hgou7DTOZGotOZmqQF_73TVlzq5l44fOcsPkLOgd4ABXm7GI4qJFBxZcw1pVRAwQ_ICLRihQajDsnoFzkmJym9D5AqFR8RMWuwy8EHV-XQd5PeT3y7zhnjpMEYNkO6wbSN6xiaNxxS95FOyZGv2oRnP39MFo8Pr9PnYv7yNJvezwtXUsiFQu8AjPGsop5LSR3XzADVXOlaouZceeGcA4ZUN9xXWFfcS9qYWnjgY3K5X13F_nONKdtlSA7btuqwXyerSsm4ASYH8uJPkikmBDP6XxBUaYTeLYo96GKfUkRvVzEsq_hlgdqtdbuzbrdKrTF2Z93yoXe37-GgZRMw2uQCdg6bENFl2_Thn4Vva0qIcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17495826</pqid></control><display><type>article</type><title>Identification of flutter derivatives of bridge decks</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Gu, Ming ; Zhang, Ruoxue ; Xiang, Haifan</creator><creatorcontrib>Gu, Ming ; Zhang, Ruoxue ; Xiang, Haifan</creatorcontrib><description>An identification method has been developed to extract all the flutter derivatives defined by R.H. Scanlan. In the present work, the signals of the coupled vertical–torsional free vibration of the spring-suspended section model are used. The flutter derivatives of a thin plate obtained using the present method are compared with the corresponding Theodorsen theoretical values. The present method is then used in the identification of flutter derivatives of the Jiangyin suspension Bridge over Yangtze River. The flutter critical wind speed of this bridge obtained from the full bridge aeroelastic model test in a wind tunnel shows good agreement with the estimated result from Scanlan's flutter analysis method with the flutter derivatives using the present method.</description><identifier>ISSN: 0167-6105</identifier><identifier>EISSN: 1872-8197</identifier><identifier>DOI: 10.1016/S0167-6105(99)00051-3</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bridge decks ; Flutter derivatives ; Identification method ; loading ; Long-span bridges ; Mathematical models ; Plates (structural components) ; Structural analysis ; Suspension bridges ; Vibrations (mechanical) ; Wind effects ; Wind tunnel test ; Wind tunnels</subject><ispartof>Journal of wind engineering and industrial aerodynamics, 2000-01, Vol.84 (2), p.151-162</ispartof><rights>2000 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-7efc1199f2a0f3660c3829108378b6e8337f5ccc12e08d3faeba3f60d9b5f13</citedby><cites>FETCH-LOGICAL-c401t-7efc1199f2a0f3660c3829108378b6e8337f5ccc12e08d3faeba3f60d9b5f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0167-6105(99)00051-3$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids></links><search><creatorcontrib>Gu, Ming</creatorcontrib><creatorcontrib>Zhang, Ruoxue</creatorcontrib><creatorcontrib>Xiang, Haifan</creatorcontrib><title>Identification of flutter derivatives of bridge decks</title><title>Journal of wind engineering and industrial aerodynamics</title><description>An identification method has been developed to extract all the flutter derivatives defined by R.H. Scanlan. In the present work, the signals of the coupled vertical–torsional free vibration of the spring-suspended section model are used. The flutter derivatives of a thin plate obtained using the present method are compared with the corresponding Theodorsen theoretical values. The present method is then used in the identification of flutter derivatives of the Jiangyin suspension Bridge over Yangtze River. The flutter critical wind speed of this bridge obtained from the full bridge aeroelastic model test in a wind tunnel shows good agreement with the estimated result from Scanlan's flutter analysis method with the flutter derivatives using the present method.</description><subject>Bridge decks</subject><subject>Flutter derivatives</subject><subject>Identification method</subject><subject>loading</subject><subject>Long-span bridges</subject><subject>Mathematical models</subject><subject>Plates (structural components)</subject><subject>Structural analysis</subject><subject>Suspension bridges</subject><subject>Vibrations (mechanical)</subject><subject>Wind effects</subject><subject>Wind tunnel test</subject><subject>Wind tunnels</subject><issn>0167-6105</issn><issn>1872-8197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKs_QejKx2I0N5m8ViLFR6Hgou7DTOZGotOZmqQF_73TVlzq5l44fOcsPkLOgd4ABXm7GI4qJFBxZcw1pVRAwQ_ICLRihQajDsnoFzkmJym9D5AqFR8RMWuwy8EHV-XQd5PeT3y7zhnjpMEYNkO6wbSN6xiaNxxS95FOyZGv2oRnP39MFo8Pr9PnYv7yNJvezwtXUsiFQu8AjPGsop5LSR3XzADVXOlaouZceeGcA4ZUN9xXWFfcS9qYWnjgY3K5X13F_nONKdtlSA7btuqwXyerSsm4ASYH8uJPkikmBDP6XxBUaYTeLYo96GKfUkRvVzEsq_hlgdqtdbuzbrdKrTF2Z93yoXe37-GgZRMw2uQCdg6bENFl2_Thn4Vva0qIcg</recordid><startdate>20000131</startdate><enddate>20000131</enddate><creator>Gu, Ming</creator><creator>Zhang, Ruoxue</creator><creator>Xiang, Haifan</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T2</scope><scope>7U2</scope><scope>C1K</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>7TC</scope></search><sort><creationdate>20000131</creationdate><title>Identification of flutter derivatives of bridge decks</title><author>Gu, Ming ; Zhang, Ruoxue ; Xiang, Haifan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-7efc1199f2a0f3660c3829108378b6e8337f5ccc12e08d3faeba3f60d9b5f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Bridge decks</topic><topic>Flutter derivatives</topic><topic>Identification method</topic><topic>loading</topic><topic>Long-span bridges</topic><topic>Mathematical models</topic><topic>Plates (structural components)</topic><topic>Structural analysis</topic><topic>Suspension bridges</topic><topic>Vibrations (mechanical)</topic><topic>Wind effects</topic><topic>Wind tunnel test</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Ming</creatorcontrib><creatorcontrib>Zhang, Ruoxue</creatorcontrib><creatorcontrib>Xiang, Haifan</creatorcontrib><collection>CrossRef</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Journal of wind engineering and industrial aerodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Ming</au><au>Zhang, Ruoxue</au><au>Xiang, Haifan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of flutter derivatives of bridge decks</atitle><jtitle>Journal of wind engineering and industrial aerodynamics</jtitle><date>2000-01-31</date><risdate>2000</risdate><volume>84</volume><issue>2</issue><spage>151</spage><epage>162</epage><pages>151-162</pages><issn>0167-6105</issn><eissn>1872-8197</eissn><abstract>An identification method has been developed to extract all the flutter derivatives defined by R.H. Scanlan. In the present work, the signals of the coupled vertical–torsional free vibration of the spring-suspended section model are used. The flutter derivatives of a thin plate obtained using the present method are compared with the corresponding Theodorsen theoretical values. The present method is then used in the identification of flutter derivatives of the Jiangyin suspension Bridge over Yangtze River. The flutter critical wind speed of this bridge obtained from the full bridge aeroelastic model test in a wind tunnel shows good agreement with the estimated result from Scanlan's flutter analysis method with the flutter derivatives using the present method.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0167-6105(99)00051-3</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-6105
ispartof Journal of wind engineering and industrial aerodynamics, 2000-01, Vol.84 (2), p.151-162
issn 0167-6105
1872-8197
language eng
recordid cdi_proquest_miscellaneous_746239126
source ScienceDirect Journals (5 years ago - present)
subjects Bridge decks
Flutter derivatives
Identification method
loading
Long-span bridges
Mathematical models
Plates (structural components)
Structural analysis
Suspension bridges
Vibrations (mechanical)
Wind effects
Wind tunnel test
Wind tunnels
title Identification of flutter derivatives of bridge decks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A30%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20flutter%20derivatives%20of%20bridge%20decks&rft.jtitle=Journal%20of%20wind%20engineering%20and%20industrial%20aerodynamics&rft.au=Gu,%20Ming&rft.date=2000-01-31&rft.volume=84&rft.issue=2&rft.spage=151&rft.epage=162&rft.pages=151-162&rft.issn=0167-6105&rft.eissn=1872-8197&rft_id=info:doi/10.1016/S0167-6105(99)00051-3&rft_dat=%3Cproquest_cross%3E27255298%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17495826&rft_id=info:pmid/&rft_els_id=S0167610599000513&rfr_iscdi=true