MODELING THE ALTITUDE EFFECT ON SOLAR UV RADIATION
A simple numerical model that describes the altitude effect of solar UV flux under cloud-free conditions was developed and tested. The model computes the direct and diffuse UV irradiances for the wavelength range 290–385 nm, at any sub-polar location and time (restricted to arid areas). The input pa...
Gespeichert in:
Veröffentlicht in: | Solar energy 1999-02, Vol.65 (3), p.181-187 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 187 |
---|---|
container_issue | 3 |
container_start_page | 181 |
container_title | Solar energy |
container_volume | 65 |
creator | Dvorkin, A.Y. Steinberger, E.H. |
description | A simple numerical model that describes the altitude effect of solar UV flux under cloud-free conditions was developed and tested. The model computes the direct and diffuse UV irradiances for the wavelength range 290–385 nm, at any sub-polar location and time (restricted to arid areas). The input parameters include extraterrestrial solar irradiance, ozone content and vertical distribution, aerosol amounts and size distribution, SO
2 and NO
2 contents, surface albedo and solar zenith angle. Model results were compared with measurements made in the tropical Chilean Andes for altitudes up to 5500 m above sea level. The model and data show good agreement. For the measured direct component a linear increase with altitude was assumed, whereas model results, computed up to 15 km altitude, exhibit a non-linear behavior. However, in the lowest few kilometers a linear regression was adequate for both model and measurements. As for the diffuse component, the variation with altitude strongly depends on wavelength and solar zenith angle. At short wavelengths and large solar zenith angles, a pronounced maximum occurs at a level which depends on these parameters. The maximum cannot be observed when integrating over the UV-A range. This behavior can be understood by taking into account the sources of the diffuse flux at any given level in the atmosphere. |
doi_str_mv | 10.1016/S0038-092X(98)00126-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746238564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X98001261</els_id><sourcerecordid>745646442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-77d1ff745816012e829fb1c66454a242b655610b1d0cf4675fe208095f1b19f63</originalsourceid><addsrcrecordid>eNqNkFtLwzAYhoMoOKc_QSgiqBfVfFkO7ZWUrZuFusLWiXehyxLo2NaZbIL_3swNBW_06r153u_wIHQJ-B4w8Icxxp0oxDF5vY2jO4yB8BCOUAuogBAIE8eo9Y2cojPn5h4SEIkWIs9FL82z4SAon9IgycusnPTSIO33024ZFMNgXOTJKJi8BKOklyVlVgzP0YmpFk5fHLKNJv207D6FeTHIukkeKkrEJhRiBsYIyiLg_iQdkdhMQXFOGa0IJVPOGAc8hRlWhnLBjCY4wjEzMIXY8E4b3eznrm3zttVuI5e1U3qxqFa62TopKCediHH6D9JTnFLiyatf5LzZ2pV_Q5KOVxJjL6qN2B5StnHOaiPXtl5W9kMCljvj8su43OmUsc-dcQm-d30YXjlVLYytVqp2P2XBI4531z7uMe3lvdfaSqdqvVJ6VlutNnLW1H8s-gQJI4xa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>231719000</pqid></control><display><type>article</type><title>MODELING THE ALTITUDE EFFECT ON SOLAR UV RADIATION</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Dvorkin, A.Y. ; Steinberger, E.H.</creator><creatorcontrib>Dvorkin, A.Y. ; Steinberger, E.H.</creatorcontrib><description>A simple numerical model that describes the altitude effect of solar UV flux under cloud-free conditions was developed and tested. The model computes the direct and diffuse UV irradiances for the wavelength range 290–385 nm, at any sub-polar location and time (restricted to arid areas). The input parameters include extraterrestrial solar irradiance, ozone content and vertical distribution, aerosol amounts and size distribution, SO
2 and NO
2 contents, surface albedo and solar zenith angle. Model results were compared with measurements made in the tropical Chilean Andes for altitudes up to 5500 m above sea level. The model and data show good agreement. For the measured direct component a linear increase with altitude was assumed, whereas model results, computed up to 15 km altitude, exhibit a non-linear behavior. However, in the lowest few kilometers a linear regression was adequate for both model and measurements. As for the diffuse component, the variation with altitude strongly depends on wavelength and solar zenith angle. At short wavelengths and large solar zenith angles, a pronounced maximum occurs at a level which depends on these parameters. The maximum cannot be observed when integrating over the UV-A range. This behavior can be understood by taking into account the sources of the diffuse flux at any given level in the atmosphere.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/S0038-092X(98)00126-1</identifier><identifier>CODEN: SRENA4</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Altitude ; Atmospheric aerosols ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Mathematical models ; Meteorology ; Nitrogen oxides ; Ozone ; Radiative transfer. Solar radiation ; Regression analysis ; Solar energy ; Sulfur dioxide ; Ultraviolet radiation</subject><ispartof>Solar energy, 1999-02, Vol.65 (3), p.181-187</ispartof><rights>1999 Elsevier Science Ltd</rights><rights>1999 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Feb 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-77d1ff745816012e829fb1c66454a242b655610b1d0cf4675fe208095f1b19f63</citedby><cites>FETCH-LOGICAL-c427t-77d1ff745816012e829fb1c66454a242b655610b1d0cf4675fe208095f1b19f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0038-092X(98)00126-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1768604$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dvorkin, A.Y.</creatorcontrib><creatorcontrib>Steinberger, E.H.</creatorcontrib><title>MODELING THE ALTITUDE EFFECT ON SOLAR UV RADIATION</title><title>Solar energy</title><description>A simple numerical model that describes the altitude effect of solar UV flux under cloud-free conditions was developed and tested. The model computes the direct and diffuse UV irradiances for the wavelength range 290–385 nm, at any sub-polar location and time (restricted to arid areas). The input parameters include extraterrestrial solar irradiance, ozone content and vertical distribution, aerosol amounts and size distribution, SO
2 and NO
2 contents, surface albedo and solar zenith angle. Model results were compared with measurements made in the tropical Chilean Andes for altitudes up to 5500 m above sea level. The model and data show good agreement. For the measured direct component a linear increase with altitude was assumed, whereas model results, computed up to 15 km altitude, exhibit a non-linear behavior. However, in the lowest few kilometers a linear regression was adequate for both model and measurements. As for the diffuse component, the variation with altitude strongly depends on wavelength and solar zenith angle. At short wavelengths and large solar zenith angles, a pronounced maximum occurs at a level which depends on these parameters. The maximum cannot be observed when integrating over the UV-A range. This behavior can be understood by taking into account the sources of the diffuse flux at any given level in the atmosphere.</description><subject>Altitude</subject><subject>Atmospheric aerosols</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Nitrogen oxides</subject><subject>Ozone</subject><subject>Radiative transfer. Solar radiation</subject><subject>Regression analysis</subject><subject>Solar energy</subject><subject>Sulfur dioxide</subject><subject>Ultraviolet radiation</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqNkFtLwzAYhoMoOKc_QSgiqBfVfFkO7ZWUrZuFusLWiXehyxLo2NaZbIL_3swNBW_06r153u_wIHQJ-B4w8Icxxp0oxDF5vY2jO4yB8BCOUAuogBAIE8eo9Y2cojPn5h4SEIkWIs9FL82z4SAon9IgycusnPTSIO33024ZFMNgXOTJKJi8BKOklyVlVgzP0YmpFk5fHLKNJv207D6FeTHIukkeKkrEJhRiBsYIyiLg_iQdkdhMQXFOGa0IJVPOGAc8hRlWhnLBjCY4wjEzMIXY8E4b3eznrm3zttVuI5e1U3qxqFa62TopKCediHH6D9JTnFLiyatf5LzZ2pV_Q5KOVxJjL6qN2B5StnHOaiPXtl5W9kMCljvj8su43OmUsc-dcQm-d30YXjlVLYytVqp2P2XBI4531z7uMe3lvdfaSqdqvVJ6VlutNnLW1H8s-gQJI4xa</recordid><startdate>19990201</startdate><enddate>19990201</enddate><creator>Dvorkin, A.Y.</creator><creator>Steinberger, E.H.</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><scope>7TC</scope></search><sort><creationdate>19990201</creationdate><title>MODELING THE ALTITUDE EFFECT ON SOLAR UV RADIATION</title><author>Dvorkin, A.Y. ; Steinberger, E.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-77d1ff745816012e829fb1c66454a242b655610b1d0cf4675fe208095f1b19f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Altitude</topic><topic>Atmospheric aerosols</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Nitrogen oxides</topic><topic>Ozone</topic><topic>Radiative transfer. Solar radiation</topic><topic>Regression analysis</topic><topic>Solar energy</topic><topic>Sulfur dioxide</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dvorkin, A.Y.</creatorcontrib><creatorcontrib>Steinberger, E.H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dvorkin, A.Y.</au><au>Steinberger, E.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MODELING THE ALTITUDE EFFECT ON SOLAR UV RADIATION</atitle><jtitle>Solar energy</jtitle><date>1999-02-01</date><risdate>1999</risdate><volume>65</volume><issue>3</issue><spage>181</spage><epage>187</epage><pages>181-187</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><coden>SRENA4</coden><abstract>A simple numerical model that describes the altitude effect of solar UV flux under cloud-free conditions was developed and tested. The model computes the direct and diffuse UV irradiances for the wavelength range 290–385 nm, at any sub-polar location and time (restricted to arid areas). The input parameters include extraterrestrial solar irradiance, ozone content and vertical distribution, aerosol amounts and size distribution, SO
2 and NO
2 contents, surface albedo and solar zenith angle. Model results were compared with measurements made in the tropical Chilean Andes for altitudes up to 5500 m above sea level. The model and data show good agreement. For the measured direct component a linear increase with altitude was assumed, whereas model results, computed up to 15 km altitude, exhibit a non-linear behavior. However, in the lowest few kilometers a linear regression was adequate for both model and measurements. As for the diffuse component, the variation with altitude strongly depends on wavelength and solar zenith angle. At short wavelengths and large solar zenith angles, a pronounced maximum occurs at a level which depends on these parameters. The maximum cannot be observed when integrating over the UV-A range. This behavior can be understood by taking into account the sources of the diffuse flux at any given level in the atmosphere.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0038-092X(98)00126-1</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-092X |
ispartof | Solar energy, 1999-02, Vol.65 (3), p.181-187 |
issn | 0038-092X 1471-1257 |
language | eng |
recordid | cdi_proquest_miscellaneous_746238564 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Altitude Atmospheric aerosols Earth, ocean, space Exact sciences and technology External geophysics Mathematical models Meteorology Nitrogen oxides Ozone Radiative transfer. Solar radiation Regression analysis Solar energy Sulfur dioxide Ultraviolet radiation |
title | MODELING THE ALTITUDE EFFECT ON SOLAR UV RADIATION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A27%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MODELING%20THE%20ALTITUDE%20EFFECT%20ON%20SOLAR%20UV%20RADIATION&rft.jtitle=Solar%20energy&rft.au=Dvorkin,%20A.Y.&rft.date=1999-02-01&rft.volume=65&rft.issue=3&rft.spage=181&rft.epage=187&rft.pages=181-187&rft.issn=0038-092X&rft.eissn=1471-1257&rft.coden=SRENA4&rft_id=info:doi/10.1016/S0038-092X(98)00126-1&rft_dat=%3Cproquest_cross%3E745646442%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=231719000&rft_id=info:pmid/&rft_els_id=S0038092X98001261&rfr_iscdi=true |