SOPRAG: a system for boiling water reactors reload pattern optimization using genetic algorithms
Genetic Algorithms (GA) are used in combination with the steady state nodal core simulator PRESTO-B to create a system for the optimization of reload patterns for Boiling Water Reactors (BWR). The system uses the basic GA operators, crossover, mutation and selection over the loading pattern (LP) rep...
Gespeichert in:
Veröffentlicht in: | Annals of nuclear energy 1999-08, Vol.26 (12), p.1053-1063 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1063 |
---|---|
container_issue | 12 |
container_start_page | 1053 |
container_title | Annals of nuclear energy |
container_volume | 26 |
creator | Francois, J L Lopez, HA |
description | Genetic Algorithms (GA) are used in combination with the steady state nodal core simulator PRESTO-B to create a system for the optimization of reload patterns for Boiling Water Reactors (BWR). The system uses the basic GA operators, crossover, mutation and selection over the loading pattern (LP) represented by a combination of fresh and burned fuel assemblies, as well as an objective function taking into account cycle length and radial peaking factor, to obtain improved loading patterns compared with real BWR loadings. The system takes advantage of the efficient quarter core two dimensional (2D) calculations, using the Haling technique to perform thousands of LPs evaluations and obtain the better candidates in a reasonably computer processor (CPU) time. |
doi_str_mv | 10.1016/S0306-4549(99)00003-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746238548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306454999000031</els_id><sourcerecordid>746238548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-fd13e81ad1e45d6c9323a10ce48754a6fd158f2bfa964bf06618a3cfa71f44243</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKs_QchNPawmm2x214uUolUoVKyeY5qd1MjuZk1Spf56t614dS4zzLz3YD6ETim5pISKqzlhRCQ84-V5WV6QvlhC99CAFjlLUkrIPhr8SQ7RUQjvhNC04HyAXuezx6fR5BorHNYhQoON83jhbG3bJf5SETz2oHR0PvRD7VSFOxX7dYtdF21jv1W0rsWrsDEsoYVoNVb10nkb35pwjA6MqgOc_PYherm7fR7fJ9PZ5GE8miaasTImpqIMCqoqCjyrhC5ZyhQlGniRZ1yJ_p4VJl0YVQq-MEQIWiimjcqp4TzlbIjOdrmddx8rCFE2Nmioa9WCWwWZc5GyIuNFr8x2Su1dCB6M7LxtlF9LSuQGqNwClRtasizlFqikve9m54P-jU8LXgZtodVQWQ86ysrZfxJ-ABj8flo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746238548</pqid></control><display><type>article</type><title>SOPRAG: a system for boiling water reactors reload pattern optimization using genetic algorithms</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Francois, J L ; Lopez, HA</creator><creatorcontrib>Francois, J L ; Lopez, HA</creatorcontrib><description>Genetic Algorithms (GA) are used in combination with the steady state nodal core simulator PRESTO-B to create a system for the optimization of reload patterns for Boiling Water Reactors (BWR). The system uses the basic GA operators, crossover, mutation and selection over the loading pattern (LP) represented by a combination of fresh and burned fuel assemblies, as well as an objective function taking into account cycle length and radial peaking factor, to obtain improved loading patterns compared with real BWR loadings. The system takes advantage of the efficient quarter core two dimensional (2D) calculations, using the Haling technique to perform thousands of LPs evaluations and obtain the better candidates in a reasonably computer processor (CPU) time.</description><identifier>ISSN: 0306-4549</identifier><identifier>EISSN: 1873-2100</identifier><identifier>DOI: 10.1016/S0306-4549(99)00003-1</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Genetic algorithms ; Nuclear reactor simulators ; Optimization</subject><ispartof>Annals of nuclear energy, 1999-08, Vol.26 (12), p.1053-1063</ispartof><rights>1999 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-fd13e81ad1e45d6c9323a10ce48754a6fd158f2bfa964bf06618a3cfa71f44243</citedby><cites>FETCH-LOGICAL-c339t-fd13e81ad1e45d6c9323a10ce48754a6fd158f2bfa964bf06618a3cfa71f44243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0306-4549(99)00003-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Francois, J L</creatorcontrib><creatorcontrib>Lopez, HA</creatorcontrib><title>SOPRAG: a system for boiling water reactors reload pattern optimization using genetic algorithms</title><title>Annals of nuclear energy</title><description>Genetic Algorithms (GA) are used in combination with the steady state nodal core simulator PRESTO-B to create a system for the optimization of reload patterns for Boiling Water Reactors (BWR). The system uses the basic GA operators, crossover, mutation and selection over the loading pattern (LP) represented by a combination of fresh and burned fuel assemblies, as well as an objective function taking into account cycle length and radial peaking factor, to obtain improved loading patterns compared with real BWR loadings. The system takes advantage of the efficient quarter core two dimensional (2D) calculations, using the Haling technique to perform thousands of LPs evaluations and obtain the better candidates in a reasonably computer processor (CPU) time.</description><subject>Genetic algorithms</subject><subject>Nuclear reactor simulators</subject><subject>Optimization</subject><issn>0306-4549</issn><issn>1873-2100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLAzEQhYMoWKs_QchNPawmm2x214uUolUoVKyeY5qd1MjuZk1Spf56t614dS4zzLz3YD6ETim5pISKqzlhRCQ84-V5WV6QvlhC99CAFjlLUkrIPhr8SQ7RUQjvhNC04HyAXuezx6fR5BorHNYhQoON83jhbG3bJf5SETz2oHR0PvRD7VSFOxX7dYtdF21jv1W0rsWrsDEsoYVoNVb10nkb35pwjA6MqgOc_PYherm7fR7fJ9PZ5GE8miaasTImpqIMCqoqCjyrhC5ZyhQlGniRZ1yJ_p4VJl0YVQq-MEQIWiimjcqp4TzlbIjOdrmddx8rCFE2Nmioa9WCWwWZc5GyIuNFr8x2Su1dCB6M7LxtlF9LSuQGqNwClRtasizlFqikve9m54P-jU8LXgZtodVQWQ86ysrZfxJ-ABj8flo</recordid><startdate>19990801</startdate><enddate>19990801</enddate><creator>Francois, J L</creator><creator>Lopez, HA</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>19990801</creationdate><title>SOPRAG: a system for boiling water reactors reload pattern optimization using genetic algorithms</title><author>Francois, J L ; Lopez, HA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-fd13e81ad1e45d6c9323a10ce48754a6fd158f2bfa964bf06618a3cfa71f44243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Genetic algorithms</topic><topic>Nuclear reactor simulators</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Francois, J L</creatorcontrib><creatorcontrib>Lopez, HA</creatorcontrib><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Annals of nuclear energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Francois, J L</au><au>Lopez, HA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SOPRAG: a system for boiling water reactors reload pattern optimization using genetic algorithms</atitle><jtitle>Annals of nuclear energy</jtitle><date>1999-08-01</date><risdate>1999</risdate><volume>26</volume><issue>12</issue><spage>1053</spage><epage>1063</epage><pages>1053-1063</pages><issn>0306-4549</issn><eissn>1873-2100</eissn><abstract>Genetic Algorithms (GA) are used in combination with the steady state nodal core simulator PRESTO-B to create a system for the optimization of reload patterns for Boiling Water Reactors (BWR). The system uses the basic GA operators, crossover, mutation and selection over the loading pattern (LP) represented by a combination of fresh and burned fuel assemblies, as well as an objective function taking into account cycle length and radial peaking factor, to obtain improved loading patterns compared with real BWR loadings. The system takes advantage of the efficient quarter core two dimensional (2D) calculations, using the Haling technique to perform thousands of LPs evaluations and obtain the better candidates in a reasonably computer processor (CPU) time.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0306-4549(99)00003-1</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-4549 |
ispartof | Annals of nuclear energy, 1999-08, Vol.26 (12), p.1053-1063 |
issn | 0306-4549 1873-2100 |
language | eng |
recordid | cdi_proquest_miscellaneous_746238548 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Genetic algorithms Nuclear reactor simulators Optimization |
title | SOPRAG: a system for boiling water reactors reload pattern optimization using genetic algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A29%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SOPRAG:%20a%20system%20for%20boiling%20water%20reactors%20reload%20pattern%20optimization%20using%20genetic%20algorithms&rft.jtitle=Annals%20of%20nuclear%20energy&rft.au=Francois,%20J%20L&rft.date=1999-08-01&rft.volume=26&rft.issue=12&rft.spage=1053&rft.epage=1063&rft.pages=1053-1063&rft.issn=0306-4549&rft.eissn=1873-2100&rft_id=info:doi/10.1016/S0306-4549(99)00003-1&rft_dat=%3Cproquest_cross%3E746238548%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=746238548&rft_id=info:pmid/&rft_els_id=S0306454999000031&rfr_iscdi=true |