SOPRAG: a system for boiling water reactors reload pattern optimization using genetic algorithms

Genetic Algorithms (GA) are used in combination with the steady state nodal core simulator PRESTO-B to create a system for the optimization of reload patterns for Boiling Water Reactors (BWR). The system uses the basic GA operators, crossover, mutation and selection over the loading pattern (LP) rep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of nuclear energy 1999-08, Vol.26 (12), p.1053-1063
Hauptverfasser: Francois, J L, Lopez, HA
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1063
container_issue 12
container_start_page 1053
container_title Annals of nuclear energy
container_volume 26
creator Francois, J L
Lopez, HA
description Genetic Algorithms (GA) are used in combination with the steady state nodal core simulator PRESTO-B to create a system for the optimization of reload patterns for Boiling Water Reactors (BWR). The system uses the basic GA operators, crossover, mutation and selection over the loading pattern (LP) represented by a combination of fresh and burned fuel assemblies, as well as an objective function taking into account cycle length and radial peaking factor, to obtain improved loading patterns compared with real BWR loadings. The system takes advantage of the efficient quarter core two dimensional (2D) calculations, using the Haling technique to perform thousands of LPs evaluations and obtain the better candidates in a reasonably computer processor (CPU) time.
doi_str_mv 10.1016/S0306-4549(99)00003-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746238548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306454999000031</els_id><sourcerecordid>746238548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-fd13e81ad1e45d6c9323a10ce48754a6fd158f2bfa964bf06618a3cfa71f44243</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKs_QchNPawmm2x214uUolUoVKyeY5qd1MjuZk1Spf56t614dS4zzLz3YD6ETim5pISKqzlhRCQ84-V5WV6QvlhC99CAFjlLUkrIPhr8SQ7RUQjvhNC04HyAXuezx6fR5BorHNYhQoON83jhbG3bJf5SETz2oHR0PvRD7VSFOxX7dYtdF21jv1W0rsWrsDEsoYVoNVb10nkb35pwjA6MqgOc_PYherm7fR7fJ9PZ5GE8miaasTImpqIMCqoqCjyrhC5ZyhQlGniRZ1yJ_p4VJl0YVQq-MEQIWiimjcqp4TzlbIjOdrmddx8rCFE2Nmioa9WCWwWZc5GyIuNFr8x2Su1dCB6M7LxtlF9LSuQGqNwClRtasizlFqikve9m54P-jU8LXgZtodVQWQ86ysrZfxJ-ABj8flo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746238548</pqid></control><display><type>article</type><title>SOPRAG: a system for boiling water reactors reload pattern optimization using genetic algorithms</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Francois, J L ; Lopez, HA</creator><creatorcontrib>Francois, J L ; Lopez, HA</creatorcontrib><description>Genetic Algorithms (GA) are used in combination with the steady state nodal core simulator PRESTO-B to create a system for the optimization of reload patterns for Boiling Water Reactors (BWR). The system uses the basic GA operators, crossover, mutation and selection over the loading pattern (LP) represented by a combination of fresh and burned fuel assemblies, as well as an objective function taking into account cycle length and radial peaking factor, to obtain improved loading patterns compared with real BWR loadings. The system takes advantage of the efficient quarter core two dimensional (2D) calculations, using the Haling technique to perform thousands of LPs evaluations and obtain the better candidates in a reasonably computer processor (CPU) time.</description><identifier>ISSN: 0306-4549</identifier><identifier>EISSN: 1873-2100</identifier><identifier>DOI: 10.1016/S0306-4549(99)00003-1</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Genetic algorithms ; Nuclear reactor simulators ; Optimization</subject><ispartof>Annals of nuclear energy, 1999-08, Vol.26 (12), p.1053-1063</ispartof><rights>1999 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-fd13e81ad1e45d6c9323a10ce48754a6fd158f2bfa964bf06618a3cfa71f44243</citedby><cites>FETCH-LOGICAL-c339t-fd13e81ad1e45d6c9323a10ce48754a6fd158f2bfa964bf06618a3cfa71f44243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0306-4549(99)00003-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Francois, J L</creatorcontrib><creatorcontrib>Lopez, HA</creatorcontrib><title>SOPRAG: a system for boiling water reactors reload pattern optimization using genetic algorithms</title><title>Annals of nuclear energy</title><description>Genetic Algorithms (GA) are used in combination with the steady state nodal core simulator PRESTO-B to create a system for the optimization of reload patterns for Boiling Water Reactors (BWR). The system uses the basic GA operators, crossover, mutation and selection over the loading pattern (LP) represented by a combination of fresh and burned fuel assemblies, as well as an objective function taking into account cycle length and radial peaking factor, to obtain improved loading patterns compared with real BWR loadings. The system takes advantage of the efficient quarter core two dimensional (2D) calculations, using the Haling technique to perform thousands of LPs evaluations and obtain the better candidates in a reasonably computer processor (CPU) time.</description><subject>Genetic algorithms</subject><subject>Nuclear reactor simulators</subject><subject>Optimization</subject><issn>0306-4549</issn><issn>1873-2100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLAzEQhYMoWKs_QchNPawmm2x214uUolUoVKyeY5qd1MjuZk1Spf56t614dS4zzLz3YD6ETim5pISKqzlhRCQ84-V5WV6QvlhC99CAFjlLUkrIPhr8SQ7RUQjvhNC04HyAXuezx6fR5BorHNYhQoON83jhbG3bJf5SETz2oHR0PvRD7VSFOxX7dYtdF21jv1W0rsWrsDEsoYVoNVb10nkb35pwjA6MqgOc_PYherm7fR7fJ9PZ5GE8miaasTImpqIMCqoqCjyrhC5ZyhQlGniRZ1yJ_p4VJl0YVQq-MEQIWiimjcqp4TzlbIjOdrmddx8rCFE2Nmioa9WCWwWZc5GyIuNFr8x2Su1dCB6M7LxtlF9LSuQGqNwClRtasizlFqikve9m54P-jU8LXgZtodVQWQ86ysrZfxJ-ABj8flo</recordid><startdate>19990801</startdate><enddate>19990801</enddate><creator>Francois, J L</creator><creator>Lopez, HA</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>19990801</creationdate><title>SOPRAG: a system for boiling water reactors reload pattern optimization using genetic algorithms</title><author>Francois, J L ; Lopez, HA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-fd13e81ad1e45d6c9323a10ce48754a6fd158f2bfa964bf06618a3cfa71f44243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Genetic algorithms</topic><topic>Nuclear reactor simulators</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Francois, J L</creatorcontrib><creatorcontrib>Lopez, HA</creatorcontrib><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Annals of nuclear energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Francois, J L</au><au>Lopez, HA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SOPRAG: a system for boiling water reactors reload pattern optimization using genetic algorithms</atitle><jtitle>Annals of nuclear energy</jtitle><date>1999-08-01</date><risdate>1999</risdate><volume>26</volume><issue>12</issue><spage>1053</spage><epage>1063</epage><pages>1053-1063</pages><issn>0306-4549</issn><eissn>1873-2100</eissn><abstract>Genetic Algorithms (GA) are used in combination with the steady state nodal core simulator PRESTO-B to create a system for the optimization of reload patterns for Boiling Water Reactors (BWR). The system uses the basic GA operators, crossover, mutation and selection over the loading pattern (LP) represented by a combination of fresh and burned fuel assemblies, as well as an objective function taking into account cycle length and radial peaking factor, to obtain improved loading patterns compared with real BWR loadings. The system takes advantage of the efficient quarter core two dimensional (2D) calculations, using the Haling technique to perform thousands of LPs evaluations and obtain the better candidates in a reasonably computer processor (CPU) time.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0306-4549(99)00003-1</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0306-4549
ispartof Annals of nuclear energy, 1999-08, Vol.26 (12), p.1053-1063
issn 0306-4549
1873-2100
language eng
recordid cdi_proquest_miscellaneous_746238548
source Elsevier ScienceDirect Journals Complete
subjects Genetic algorithms
Nuclear reactor simulators
Optimization
title SOPRAG: a system for boiling water reactors reload pattern optimization using genetic algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A29%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SOPRAG:%20a%20system%20for%20boiling%20water%20reactors%20reload%20pattern%20optimization%20using%20genetic%20algorithms&rft.jtitle=Annals%20of%20nuclear%20energy&rft.au=Francois,%20J%20L&rft.date=1999-08-01&rft.volume=26&rft.issue=12&rft.spage=1053&rft.epage=1063&rft.pages=1053-1063&rft.issn=0306-4549&rft.eissn=1873-2100&rft_id=info:doi/10.1016/S0306-4549(99)00003-1&rft_dat=%3Cproquest_cross%3E746238548%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=746238548&rft_id=info:pmid/&rft_els_id=S0306454999000031&rfr_iscdi=true