Thermocapillary convection in two-layer systems

This paper concerns a numerical study of the flow characteristics of thermocapillary convection in a system composed of two immiscible liquid layers subject to a temperature gradient along their interface. We consider the two-layer system: B 2O 3 (encapsulant) and GaAs (melt), for its experimental r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 1998-06, Vol.41 (11), p.1499-1511
Hauptverfasser: Liu, Q.S., Roux, B., Velarde, M.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1511
container_issue 11
container_start_page 1499
container_title International journal of heat and mass transfer
container_volume 41
creator Liu, Q.S.
Roux, B.
Velarde, M.G.
description This paper concerns a numerical study of the flow characteristics of thermocapillary convection in a system composed of two immiscible liquid layers subject to a temperature gradient along their interface. We consider the two-layer system: B 2O 3 (encapsulant) and GaAs (melt), for its experimental relevance in crystal growth by the directional solidification method. Two cases have been studied: a system with only one liquid interface (melt/encapsulant) and a system where the outer surface of encapsulant is open to air (and so, subject to a second thermocapillary force). Both the liquid-liquid interface and the outer surface are assumed to be undeformable and flat, which is a valid assumption according to earlier theoretical and experimental results. A 2-D numerical simulation of convection is carried out in a rectangular cavity by solving the system of Navier-Stokes equations using a finite difference method with a staggered grid for the pressure. Having in perspective a Spacelab experimentation we disregarded gravity ( g = 0). We show that a strong damping of the melt flow can be obtained by using an encapsulant liquid layer having appropriate, viscosity, heat conductivity and/or thickness.
doi_str_mv 10.1016/S0017-9310(97)00277-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746237758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931097002779</els_id><sourcerecordid>746237758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-7b27d320702d22ab11c46c75214ad2d2c461f7b7b13210e0c4ee82d4226b6edd3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKc_QeiFoF7UnaRp016JDL9g4IXzOqTJKUbaZibdZP_edBveenV4D8_5eF9CLincUaDF7B2AirTKKNxU4haAiaiOyISWokoZLatjMvlDTslZCF-jBF5MyGz5ib5zWq1s2yq_TbTrN6gH6_rE9snw49JWbdEnYRsG7MI5OWlUG_DiUKfk4-lxOX9JF2_Pr_OHRao55EMqaiZMxkAAM4ypmlLNCy1yRrkysRUVbUQtapoxCgiaI5bMcMaKukBjsim53u9defe9xjDIzgaN8cce3TpIwQuWCZGXkcz3pPYuBI-NXHnbRSuSghzzkbt85GheVkLu8olqSq4OF1TQqm286rUNf8OM5gXkI3a_xzC63Vj0MmiLvUZjfcxJGmf_OfQLUc54pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746237758</pqid></control><display><type>article</type><title>Thermocapillary convection in two-layer systems</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Liu, Q.S. ; Roux, B. ; Velarde, M.G.</creator><creatorcontrib>Liu, Q.S. ; Roux, B. ; Velarde, M.G.</creatorcontrib><description>This paper concerns a numerical study of the flow characteristics of thermocapillary convection in a system composed of two immiscible liquid layers subject to a temperature gradient along their interface. We consider the two-layer system: B 2O 3 (encapsulant) and GaAs (melt), for its experimental relevance in crystal growth by the directional solidification method. Two cases have been studied: a system with only one liquid interface (melt/encapsulant) and a system where the outer surface of encapsulant is open to air (and so, subject to a second thermocapillary force). Both the liquid-liquid interface and the outer surface are assumed to be undeformable and flat, which is a valid assumption according to earlier theoretical and experimental results. A 2-D numerical simulation of convection is carried out in a rectangular cavity by solving the system of Navier-Stokes equations using a finite difference method with a staggered grid for the pressure. Having in perspective a Spacelab experimentation we disregarded gravity ( g = 0). We show that a strong damping of the melt flow can be obtained by using an encapsulant liquid layer having appropriate, viscosity, heat conductivity and/or thickness.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/S0017-9310(97)00277-9</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Boron compounds ; Capillary flow ; Convection and heat transfer ; Cross-disciplinary physics: materials science; rheology ; Crystal growth ; Exact sciences and technology ; Finite difference method ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Gallium compounds ; Growth from melts; zone melting and refining ; Materials science ; Mathematical models ; Methods of crystal growth; physics of crystal growth ; Navier Stokes equations ; Phase interfaces ; Physics ; Solidification ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation ; Turbulent flows, convection, and heat transfer</subject><ispartof>International journal of heat and mass transfer, 1998-06, Vol.41 (11), p.1499-1511</ispartof><rights>1998</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-7b27d320702d22ab11c46c75214ad2d2c461f7b7b13210e0c4ee82d4226b6edd3</citedby><cites>FETCH-LOGICAL-c405t-7b27d320702d22ab11c46c75214ad2d2c461f7b7b13210e0c4ee82d4226b6edd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931097002779$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2156059$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Q.S.</creatorcontrib><creatorcontrib>Roux, B.</creatorcontrib><creatorcontrib>Velarde, M.G.</creatorcontrib><title>Thermocapillary convection in two-layer systems</title><title>International journal of heat and mass transfer</title><description>This paper concerns a numerical study of the flow characteristics of thermocapillary convection in a system composed of two immiscible liquid layers subject to a temperature gradient along their interface. We consider the two-layer system: B 2O 3 (encapsulant) and GaAs (melt), for its experimental relevance in crystal growth by the directional solidification method. Two cases have been studied: a system with only one liquid interface (melt/encapsulant) and a system where the outer surface of encapsulant is open to air (and so, subject to a second thermocapillary force). Both the liquid-liquid interface and the outer surface are assumed to be undeformable and flat, which is a valid assumption according to earlier theoretical and experimental results. A 2-D numerical simulation of convection is carried out in a rectangular cavity by solving the system of Navier-Stokes equations using a finite difference method with a staggered grid for the pressure. Having in perspective a Spacelab experimentation we disregarded gravity ( g = 0). We show that a strong damping of the melt flow can be obtained by using an encapsulant liquid layer having appropriate, viscosity, heat conductivity and/or thickness.</description><subject>Boron compounds</subject><subject>Capillary flow</subject><subject>Convection and heat transfer</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystal growth</subject><subject>Exact sciences and technology</subject><subject>Finite difference method</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gallium compounds</subject><subject>Growth from melts; zone melting and refining</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Navier Stokes equations</subject><subject>Phase interfaces</subject><subject>Physics</subject><subject>Solidification</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMoOKc_QeiFoF7UnaRp016JDL9g4IXzOqTJKUbaZibdZP_edBveenV4D8_5eF9CLincUaDF7B2AirTKKNxU4haAiaiOyISWokoZLatjMvlDTslZCF-jBF5MyGz5ib5zWq1s2yq_TbTrN6gH6_rE9snw49JWbdEnYRsG7MI5OWlUG_DiUKfk4-lxOX9JF2_Pr_OHRao55EMqaiZMxkAAM4ypmlLNCy1yRrkysRUVbUQtapoxCgiaI5bMcMaKukBjsim53u9defe9xjDIzgaN8cce3TpIwQuWCZGXkcz3pPYuBI-NXHnbRSuSghzzkbt85GheVkLu8olqSq4OF1TQqm286rUNf8OM5gXkI3a_xzC63Vj0MmiLvUZjfcxJGmf_OfQLUc54pw</recordid><startdate>19980601</startdate><enddate>19980601</enddate><creator>Liu, Q.S.</creator><creator>Roux, B.</creator><creator>Velarde, M.G.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>19980601</creationdate><title>Thermocapillary convection in two-layer systems</title><author>Liu, Q.S. ; Roux, B. ; Velarde, M.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-7b27d320702d22ab11c46c75214ad2d2c461f7b7b13210e0c4ee82d4226b6edd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Boron compounds</topic><topic>Capillary flow</topic><topic>Convection and heat transfer</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystal growth</topic><topic>Exact sciences and technology</topic><topic>Finite difference method</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gallium compounds</topic><topic>Growth from melts; zone melting and refining</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Navier Stokes equations</topic><topic>Phase interfaces</topic><topic>Physics</topic><topic>Solidification</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Q.S.</creatorcontrib><creatorcontrib>Roux, B.</creatorcontrib><creatorcontrib>Velarde, M.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Q.S.</au><au>Roux, B.</au><au>Velarde, M.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermocapillary convection in two-layer systems</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>1998-06-01</date><risdate>1998</risdate><volume>41</volume><issue>11</issue><spage>1499</spage><epage>1511</epage><pages>1499-1511</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>This paper concerns a numerical study of the flow characteristics of thermocapillary convection in a system composed of two immiscible liquid layers subject to a temperature gradient along their interface. We consider the two-layer system: B 2O 3 (encapsulant) and GaAs (melt), for its experimental relevance in crystal growth by the directional solidification method. Two cases have been studied: a system with only one liquid interface (melt/encapsulant) and a system where the outer surface of encapsulant is open to air (and so, subject to a second thermocapillary force). Both the liquid-liquid interface and the outer surface are assumed to be undeformable and flat, which is a valid assumption according to earlier theoretical and experimental results. A 2-D numerical simulation of convection is carried out in a rectangular cavity by solving the system of Navier-Stokes equations using a finite difference method with a staggered grid for the pressure. Having in perspective a Spacelab experimentation we disregarded gravity ( g = 0). We show that a strong damping of the melt flow can be obtained by using an encapsulant liquid layer having appropriate, viscosity, heat conductivity and/or thickness.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0017-9310(97)00277-9</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 1998-06, Vol.41 (11), p.1499-1511
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_746237758
source Elsevier ScienceDirect Journals Complete
subjects Boron compounds
Capillary flow
Convection and heat transfer
Cross-disciplinary physics: materials science
rheology
Crystal growth
Exact sciences and technology
Finite difference method
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Gallium compounds
Growth from melts
zone melting and refining
Materials science
Mathematical models
Methods of crystal growth
physics of crystal growth
Navier Stokes equations
Phase interfaces
Physics
Solidification
Theory and models of crystal growth
physics of crystal growth, crystal morphology and orientation
Turbulent flows, convection, and heat transfer
title Thermocapillary convection in two-layer systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A08%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermocapillary%20convection%20in%20two-layer%20systems&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Liu,%20Q.S.&rft.date=1998-06-01&rft.volume=41&rft.issue=11&rft.spage=1499&rft.epage=1511&rft.pages=1499-1511&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/S0017-9310(97)00277-9&rft_dat=%3Cproquest_cross%3E746237758%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=746237758&rft_id=info:pmid/&rft_els_id=S0017931097002779&rfr_iscdi=true