Thermocapillary convection in two-layer systems
This paper concerns a numerical study of the flow characteristics of thermocapillary convection in a system composed of two immiscible liquid layers subject to a temperature gradient along their interface. We consider the two-layer system: B 2O 3 (encapsulant) and GaAs (melt), for its experimental r...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 1998-06, Vol.41 (11), p.1499-1511 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1511 |
---|---|
container_issue | 11 |
container_start_page | 1499 |
container_title | International journal of heat and mass transfer |
container_volume | 41 |
creator | Liu, Q.S. Roux, B. Velarde, M.G. |
description | This paper concerns a numerical study of the flow characteristics of thermocapillary convection in a system composed of two immiscible liquid layers subject to a temperature gradient along their interface. We consider the two-layer system: B
2O
3 (encapsulant) and GaAs (melt), for its experimental relevance in crystal growth by the directional solidification method. Two cases have been studied: a system with only one liquid interface (melt/encapsulant) and a system where the outer surface of encapsulant is open to air (and so, subject to a second thermocapillary force). Both the liquid-liquid interface and the outer surface are assumed to be undeformable and flat, which is a valid assumption according to earlier theoretical and experimental results. A 2-D numerical simulation of convection is carried out in a rectangular cavity by solving the system of Navier-Stokes equations using a finite difference method with a staggered grid for the pressure. Having in perspective a Spacelab experimentation we disregarded gravity (
g = 0). We show that a strong damping of the melt flow can be obtained by using an encapsulant liquid layer having appropriate, viscosity, heat conductivity and/or thickness. |
doi_str_mv | 10.1016/S0017-9310(97)00277-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746237758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931097002779</els_id><sourcerecordid>746237758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-7b27d320702d22ab11c46c75214ad2d2c461f7b7b13210e0c4ee82d4226b6edd3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKc_QeiFoF7UnaRp016JDL9g4IXzOqTJKUbaZibdZP_edBveenV4D8_5eF9CLincUaDF7B2AirTKKNxU4haAiaiOyISWokoZLatjMvlDTslZCF-jBF5MyGz5ib5zWq1s2yq_TbTrN6gH6_rE9snw49JWbdEnYRsG7MI5OWlUG_DiUKfk4-lxOX9JF2_Pr_OHRao55EMqaiZMxkAAM4ypmlLNCy1yRrkysRUVbUQtapoxCgiaI5bMcMaKukBjsim53u9defe9xjDIzgaN8cce3TpIwQuWCZGXkcz3pPYuBI-NXHnbRSuSghzzkbt85GheVkLu8olqSq4OF1TQqm286rUNf8OM5gXkI3a_xzC63Vj0MmiLvUZjfcxJGmf_OfQLUc54pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746237758</pqid></control><display><type>article</type><title>Thermocapillary convection in two-layer systems</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Liu, Q.S. ; Roux, B. ; Velarde, M.G.</creator><creatorcontrib>Liu, Q.S. ; Roux, B. ; Velarde, M.G.</creatorcontrib><description>This paper concerns a numerical study of the flow characteristics of thermocapillary convection in a system composed of two immiscible liquid layers subject to a temperature gradient along their interface. We consider the two-layer system: B
2O
3 (encapsulant) and GaAs (melt), for its experimental relevance in crystal growth by the directional solidification method. Two cases have been studied: a system with only one liquid interface (melt/encapsulant) and a system where the outer surface of encapsulant is open to air (and so, subject to a second thermocapillary force). Both the liquid-liquid interface and the outer surface are assumed to be undeformable and flat, which is a valid assumption according to earlier theoretical and experimental results. A 2-D numerical simulation of convection is carried out in a rectangular cavity by solving the system of Navier-Stokes equations using a finite difference method with a staggered grid for the pressure. Having in perspective a Spacelab experimentation we disregarded gravity (
g = 0). We show that a strong damping of the melt flow can be obtained by using an encapsulant liquid layer having appropriate, viscosity, heat conductivity and/or thickness.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/S0017-9310(97)00277-9</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Boron compounds ; Capillary flow ; Convection and heat transfer ; Cross-disciplinary physics: materials science; rheology ; Crystal growth ; Exact sciences and technology ; Finite difference method ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Gallium compounds ; Growth from melts; zone melting and refining ; Materials science ; Mathematical models ; Methods of crystal growth; physics of crystal growth ; Navier Stokes equations ; Phase interfaces ; Physics ; Solidification ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation ; Turbulent flows, convection, and heat transfer</subject><ispartof>International journal of heat and mass transfer, 1998-06, Vol.41 (11), p.1499-1511</ispartof><rights>1998</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-7b27d320702d22ab11c46c75214ad2d2c461f7b7b13210e0c4ee82d4226b6edd3</citedby><cites>FETCH-LOGICAL-c405t-7b27d320702d22ab11c46c75214ad2d2c461f7b7b13210e0c4ee82d4226b6edd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931097002779$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2156059$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Q.S.</creatorcontrib><creatorcontrib>Roux, B.</creatorcontrib><creatorcontrib>Velarde, M.G.</creatorcontrib><title>Thermocapillary convection in two-layer systems</title><title>International journal of heat and mass transfer</title><description>This paper concerns a numerical study of the flow characteristics of thermocapillary convection in a system composed of two immiscible liquid layers subject to a temperature gradient along their interface. We consider the two-layer system: B
2O
3 (encapsulant) and GaAs (melt), for its experimental relevance in crystal growth by the directional solidification method. Two cases have been studied: a system with only one liquid interface (melt/encapsulant) and a system where the outer surface of encapsulant is open to air (and so, subject to a second thermocapillary force). Both the liquid-liquid interface and the outer surface are assumed to be undeformable and flat, which is a valid assumption according to earlier theoretical and experimental results. A 2-D numerical simulation of convection is carried out in a rectangular cavity by solving the system of Navier-Stokes equations using a finite difference method with a staggered grid for the pressure. Having in perspective a Spacelab experimentation we disregarded gravity (
g = 0). We show that a strong damping of the melt flow can be obtained by using an encapsulant liquid layer having appropriate, viscosity, heat conductivity and/or thickness.</description><subject>Boron compounds</subject><subject>Capillary flow</subject><subject>Convection and heat transfer</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystal growth</subject><subject>Exact sciences and technology</subject><subject>Finite difference method</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gallium compounds</subject><subject>Growth from melts; zone melting and refining</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Navier Stokes equations</subject><subject>Phase interfaces</subject><subject>Physics</subject><subject>Solidification</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMoOKc_QeiFoF7UnaRp016JDL9g4IXzOqTJKUbaZibdZP_edBveenV4D8_5eF9CLincUaDF7B2AirTKKNxU4haAiaiOyISWokoZLatjMvlDTslZCF-jBF5MyGz5ib5zWq1s2yq_TbTrN6gH6_rE9snw49JWbdEnYRsG7MI5OWlUG_DiUKfk4-lxOX9JF2_Pr_OHRao55EMqaiZMxkAAM4ypmlLNCy1yRrkysRUVbUQtapoxCgiaI5bMcMaKukBjsim53u9defe9xjDIzgaN8cce3TpIwQuWCZGXkcz3pPYuBI-NXHnbRSuSghzzkbt85GheVkLu8olqSq4OF1TQqm286rUNf8OM5gXkI3a_xzC63Vj0MmiLvUZjfcxJGmf_OfQLUc54pw</recordid><startdate>19980601</startdate><enddate>19980601</enddate><creator>Liu, Q.S.</creator><creator>Roux, B.</creator><creator>Velarde, M.G.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>19980601</creationdate><title>Thermocapillary convection in two-layer systems</title><author>Liu, Q.S. ; Roux, B. ; Velarde, M.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-7b27d320702d22ab11c46c75214ad2d2c461f7b7b13210e0c4ee82d4226b6edd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Boron compounds</topic><topic>Capillary flow</topic><topic>Convection and heat transfer</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystal growth</topic><topic>Exact sciences and technology</topic><topic>Finite difference method</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gallium compounds</topic><topic>Growth from melts; zone melting and refining</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Navier Stokes equations</topic><topic>Phase interfaces</topic><topic>Physics</topic><topic>Solidification</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Q.S.</creatorcontrib><creatorcontrib>Roux, B.</creatorcontrib><creatorcontrib>Velarde, M.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Q.S.</au><au>Roux, B.</au><au>Velarde, M.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermocapillary convection in two-layer systems</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>1998-06-01</date><risdate>1998</risdate><volume>41</volume><issue>11</issue><spage>1499</spage><epage>1511</epage><pages>1499-1511</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>This paper concerns a numerical study of the flow characteristics of thermocapillary convection in a system composed of two immiscible liquid layers subject to a temperature gradient along their interface. We consider the two-layer system: B
2O
3 (encapsulant) and GaAs (melt), for its experimental relevance in crystal growth by the directional solidification method. Two cases have been studied: a system with only one liquid interface (melt/encapsulant) and a system where the outer surface of encapsulant is open to air (and so, subject to a second thermocapillary force). Both the liquid-liquid interface and the outer surface are assumed to be undeformable and flat, which is a valid assumption according to earlier theoretical and experimental results. A 2-D numerical simulation of convection is carried out in a rectangular cavity by solving the system of Navier-Stokes equations using a finite difference method with a staggered grid for the pressure. Having in perspective a Spacelab experimentation we disregarded gravity (
g = 0). We show that a strong damping of the melt flow can be obtained by using an encapsulant liquid layer having appropriate, viscosity, heat conductivity and/or thickness.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0017-9310(97)00277-9</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 1998-06, Vol.41 (11), p.1499-1511 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_miscellaneous_746237758 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Boron compounds Capillary flow Convection and heat transfer Cross-disciplinary physics: materials science rheology Crystal growth Exact sciences and technology Finite difference method Fluid dynamics Fundamental areas of phenomenology (including applications) Gallium compounds Growth from melts zone melting and refining Materials science Mathematical models Methods of crystal growth physics of crystal growth Navier Stokes equations Phase interfaces Physics Solidification Theory and models of crystal growth physics of crystal growth, crystal morphology and orientation Turbulent flows, convection, and heat transfer |
title | Thermocapillary convection in two-layer systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A08%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermocapillary%20convection%20in%20two-layer%20systems&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Liu,%20Q.S.&rft.date=1998-06-01&rft.volume=41&rft.issue=11&rft.spage=1499&rft.epage=1511&rft.pages=1499-1511&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/S0017-9310(97)00277-9&rft_dat=%3Cproquest_cross%3E746237758%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=746237758&rft_id=info:pmid/&rft_els_id=S0017931097002779&rfr_iscdi=true |