Solutions of Luikov equations of heat and mass transfer in capillary porous bodies through matrix calculus: a new approach

In this paper an eigen value analysis approach is employed to obtain the solutions of the Luikov system of linear partial differential equations addressed to the most general type of boundary conditions. The Luikov equations provide a well established model for the analysis of various simultaneous h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 1999-07, Vol.42 (14), p.2649-2660
Hauptverfasser: Pandey, R.N., Srivastava, S.K., Mikhailov, M.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2660
container_issue 14
container_start_page 2649
container_title International journal of heat and mass transfer
container_volume 42
creator Pandey, R.N.
Srivastava, S.K.
Mikhailov, M.D.
description In this paper an eigen value analysis approach is employed to obtain the solutions of the Luikov system of linear partial differential equations addressed to the most general type of boundary conditions. The Luikov equations provide a well established model for the analysis of various simultaneous heat and mass diffusion problems in capillary porous bodies. However,analytical methods to achieve a complete and satisfactory solution of these equations is still lacking in the literature because of non inclusion of the existence of a countable number of complex roots in almost all the solutions. A specific example on contact drying of a moist porous sheet with uniform initial temperature and moisture distribution is considered. The influence of the complex roots on the dimensionless temperature, moisture content, and the local rate of drying is demonstrated. A set of benchmark results is obtained for reference purposes.
doi_str_mv 10.1016/S0017-9310(98)00253-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746237703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931098002531</els_id><sourcerecordid>746237703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-c5a91e8d3b7abd5737256f664ad594928e678a5746e64bff5c3405ccae59002b3</originalsourceid><addsrcrecordid>eNqFkE1P3DAQhi0EEgv0JyD5UKn0kGLHcRz3UiHUL2mlHmjP1sSZsG6zcbATWvrrO8siOPZkjfW88_Ewdi7FOylkfXkjhDSFVVJc2OatEKVWhTxgK9kYW5SysYds9Ywcs5Ocf-5KUdUr9vcmDssc4ph57Pl6Cb_iPce7BZ7_Nggzh7HjW8iZzwnG3GPiYeQepjAMkB74FFNcMm9jF5CYDVW3GwrMKfwhbPDLsOT3HPiIvzlMU4rgN2fsqIch46un95T9-PTx-_WXYv3t89frq3XhK6HnwmuwEptOtQbaThtlSl33dV1Bp21lywZr04A2VY111fa99opy3gNqSy5adcre7PvS2LsF8-y2IXukzUekrR0lS2WMUETqPelTzDlh76YUtnSgk8LtVLtH1W7n0dnGPap2knKvnyZApmt7cuRDfgmTamV32Ic9hnTtfcDksg84euxCQj-7Lob_DPoHyGeUXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746237703</pqid></control><display><type>article</type><title>Solutions of Luikov equations of heat and mass transfer in capillary porous bodies through matrix calculus: a new approach</title><source>Elsevier ScienceDirect Journals</source><creator>Pandey, R.N. ; Srivastava, S.K. ; Mikhailov, M.D.</creator><creatorcontrib>Pandey, R.N. ; Srivastava, S.K. ; Mikhailov, M.D.</creatorcontrib><description>In this paper an eigen value analysis approach is employed to obtain the solutions of the Luikov system of linear partial differential equations addressed to the most general type of boundary conditions. The Luikov equations provide a well established model for the analysis of various simultaneous heat and mass diffusion problems in capillary porous bodies. However,analytical methods to achieve a complete and satisfactory solution of these equations is still lacking in the literature because of non inclusion of the existence of a countable number of complex roots in almost all the solutions. A specific example on contact drying of a moist porous sheet with uniform initial temperature and moisture distribution is considered. The influence of the complex roots on the dimensionless temperature, moisture content, and the local rate of drying is demonstrated. A set of benchmark results is obtained for reference purposes.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/S0017-9310(98)00253-1</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Eigenvalues and eigenfunctions ; Energy ; Energy. Thermal use of fuels ; Equations of motion ; Exact sciences and technology ; Heat transfer ; Interfaces (materials) ; Mass transfer ; Mathematical models ; Matrix algebra ; Partial differential equations ; Porous materials ; Problem solving ; Theoretical studies. Data and constants. Metering ; Thermal diffusion in solids</subject><ispartof>International journal of heat and mass transfer, 1999-07, Vol.42 (14), p.2649-2660</ispartof><rights>1999 Elsevier Science B.V.</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-c5a91e8d3b7abd5737256f664ad594928e678a5746e64bff5c3405ccae59002b3</citedby><cites>FETCH-LOGICAL-c405t-c5a91e8d3b7abd5737256f664ad594928e678a5746e64bff5c3405ccae59002b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931098002531$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1704391$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pandey, R.N.</creatorcontrib><creatorcontrib>Srivastava, S.K.</creatorcontrib><creatorcontrib>Mikhailov, M.D.</creatorcontrib><title>Solutions of Luikov equations of heat and mass transfer in capillary porous bodies through matrix calculus: a new approach</title><title>International journal of heat and mass transfer</title><description>In this paper an eigen value analysis approach is employed to obtain the solutions of the Luikov system of linear partial differential equations addressed to the most general type of boundary conditions. The Luikov equations provide a well established model for the analysis of various simultaneous heat and mass diffusion problems in capillary porous bodies. However,analytical methods to achieve a complete and satisfactory solution of these equations is still lacking in the literature because of non inclusion of the existence of a countable number of complex roots in almost all the solutions. A specific example on contact drying of a moist porous sheet with uniform initial temperature and moisture distribution is considered. The influence of the complex roots on the dimensionless temperature, moisture content, and the local rate of drying is demonstrated. A set of benchmark results is obtained for reference purposes.</description><subject>Applied sciences</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equations of motion</subject><subject>Exact sciences and technology</subject><subject>Heat transfer</subject><subject>Interfaces (materials)</subject><subject>Mass transfer</subject><subject>Mathematical models</subject><subject>Matrix algebra</subject><subject>Partial differential equations</subject><subject>Porous materials</subject><subject>Problem solving</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermal diffusion in solids</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkE1P3DAQhi0EEgv0JyD5UKn0kGLHcRz3UiHUL2mlHmjP1sSZsG6zcbATWvrrO8siOPZkjfW88_Ewdi7FOylkfXkjhDSFVVJc2OatEKVWhTxgK9kYW5SysYds9Ywcs5Ocf-5KUdUr9vcmDssc4ph57Pl6Cb_iPce7BZ7_Nggzh7HjW8iZzwnG3GPiYeQepjAMkB74FFNcMm9jF5CYDVW3GwrMKfwhbPDLsOT3HPiIvzlMU4rgN2fsqIch46un95T9-PTx-_WXYv3t89frq3XhK6HnwmuwEptOtQbaThtlSl33dV1Bp21lywZr04A2VY111fa99opy3gNqSy5adcre7PvS2LsF8-y2IXukzUekrR0lS2WMUETqPelTzDlh76YUtnSgk8LtVLtH1W7n0dnGPap2knKvnyZApmt7cuRDfgmTamV32Ic9hnTtfcDksg84euxCQj-7Lob_DPoHyGeUXg</recordid><startdate>19990701</startdate><enddate>19990701</enddate><creator>Pandey, R.N.</creator><creator>Srivastava, S.K.</creator><creator>Mikhailov, M.D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>19990701</creationdate><title>Solutions of Luikov equations of heat and mass transfer in capillary porous bodies through matrix calculus: a new approach</title><author>Pandey, R.N. ; Srivastava, S.K. ; Mikhailov, M.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-c5a91e8d3b7abd5737256f664ad594928e678a5746e64bff5c3405ccae59002b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equations of motion</topic><topic>Exact sciences and technology</topic><topic>Heat transfer</topic><topic>Interfaces (materials)</topic><topic>Mass transfer</topic><topic>Mathematical models</topic><topic>Matrix algebra</topic><topic>Partial differential equations</topic><topic>Porous materials</topic><topic>Problem solving</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermal diffusion in solids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pandey, R.N.</creatorcontrib><creatorcontrib>Srivastava, S.K.</creatorcontrib><creatorcontrib>Mikhailov, M.D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandey, R.N.</au><au>Srivastava, S.K.</au><au>Mikhailov, M.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solutions of Luikov equations of heat and mass transfer in capillary porous bodies through matrix calculus: a new approach</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>1999-07-01</date><risdate>1999</risdate><volume>42</volume><issue>14</issue><spage>2649</spage><epage>2660</epage><pages>2649-2660</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>In this paper an eigen value analysis approach is employed to obtain the solutions of the Luikov system of linear partial differential equations addressed to the most general type of boundary conditions. The Luikov equations provide a well established model for the analysis of various simultaneous heat and mass diffusion problems in capillary porous bodies. However,analytical methods to achieve a complete and satisfactory solution of these equations is still lacking in the literature because of non inclusion of the existence of a countable number of complex roots in almost all the solutions. A specific example on contact drying of a moist porous sheet with uniform initial temperature and moisture distribution is considered. The influence of the complex roots on the dimensionless temperature, moisture content, and the local rate of drying is demonstrated. A set of benchmark results is obtained for reference purposes.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0017-9310(98)00253-1</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 1999-07, Vol.42 (14), p.2649-2660
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_746237703
source Elsevier ScienceDirect Journals
subjects Applied sciences
Eigenvalues and eigenfunctions
Energy
Energy. Thermal use of fuels
Equations of motion
Exact sciences and technology
Heat transfer
Interfaces (materials)
Mass transfer
Mathematical models
Matrix algebra
Partial differential equations
Porous materials
Problem solving
Theoretical studies. Data and constants. Metering
Thermal diffusion in solids
title Solutions of Luikov equations of heat and mass transfer in capillary porous bodies through matrix calculus: a new approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A21%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solutions%20of%20Luikov%20equations%20of%20heat%20and%20mass%20transfer%20in%20capillary%20porous%20bodies%20through%20matrix%20calculus:%20a%20new%20approach&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Pandey,%20R.N.&rft.date=1999-07-01&rft.volume=42&rft.issue=14&rft.spage=2649&rft.epage=2660&rft.pages=2649-2660&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/S0017-9310(98)00253-1&rft_dat=%3Cproquest_cross%3E746237703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=746237703&rft_id=info:pmid/&rft_els_id=S0017931098002531&rfr_iscdi=true