Reverse engineering the kidney: modelling calcium oxalate monohydrate crystallization in the nephron

Crystallization of calcium oxalate monohydrate in a section of a single kidney nephron (distal convoluted tubule) is simulated using a model adapted from industrial crystallization. The nephron fluid dynamics is represented as a crystallizer/separator series with changing volume to allow for water r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical & biological engineering & computing 2010-07, Vol.48 (7), p.649-659
Hauptverfasser: Borissova, A, Goltz, G. E, Kavanagh, J. P, Wilkins, T. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 659
container_issue 7
container_start_page 649
container_title Medical & biological engineering & computing
container_volume 48
creator Borissova, A
Goltz, G. E
Kavanagh, J. P
Wilkins, T. A
description Crystallization of calcium oxalate monohydrate in a section of a single kidney nephron (distal convoluted tubule) is simulated using a model adapted from industrial crystallization. The nephron fluid dynamics is represented as a crystallizer/separator series with changing volume to allow for water removal along the tubule. The model integrates crystallization kinetics and crystal size distribution and allows the prediction of the calcium oxalate concentration profile and the nucleation and growth rates. The critical supersaturation ratio for the nucleation of calcium oxalate crystals has been estimated as 2 and the mean crystal size as 1 μm. The crystal growth order, determined as 2.2, indicates a surface integration mechanism of crystal growth and crystal growth dispersion. The model allows the exploration of the effect of varying the input calcium oxalate concentration and the rate of water extraction, simulating real life stressors for stone formation such as dietary loading and dehydration.
doi_str_mv 10.1007/s11517-010-0617-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746235068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733352147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-f085db0f17f077e44e859b64a35219d837ed50527e658f1691815bd1da854da3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhB3CBqBdOgRnHjr3cUFU-pEpIUM6WN57spiT2YieI8OvrkEIlDnDyyPPMO7Yexp4ivEQA9SohSlQlIJRQ52K-xzaoBJYghLjPNoAidxD1CXuU0jUAR8nFQ3bCQXCx5XLD3Cf6TjFRQX7feaLY-X0xHqj42jlP8-tiCI76frltbN9001CEH7a3I-WOD4fZxaVu4pxGm7mfduyCLzr_K8TT8RCDf8wetLZP9OT2PGVXby-uzt-Xlx_ffTh_c1k2gtdj2YKWbgctqhaUIiFIy-2uFraSHLdOV4qcBMkV1VK3WG9Ro9w5dFZL4Wx1yl6ssccYvk2URjN0qcmvt57ClIwSNa8k1Pr_ZFUtO4XK5Nlf5HWYos-_MBIqlELgEocr1MSQUqTWHGM32DgbBLOYMqspk02ZxZSZ88yz2-BpN5D7M_FbTQb4CqTjIoXi3eZ_pT5fh1objN3HLpkvnzlgBahlrVVd3QCz2Kf1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>503154418</pqid></control><display><type>article</type><title>Reverse engineering the kidney: modelling calcium oxalate monohydrate crystallization in the nephron</title><source>MEDLINE</source><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Borissova, A ; Goltz, G. E ; Kavanagh, J. P ; Wilkins, T. A</creator><creatorcontrib>Borissova, A ; Goltz, G. E ; Kavanagh, J. P ; Wilkins, T. A</creatorcontrib><description>Crystallization of calcium oxalate monohydrate in a section of a single kidney nephron (distal convoluted tubule) is simulated using a model adapted from industrial crystallization. The nephron fluid dynamics is represented as a crystallizer/separator series with changing volume to allow for water removal along the tubule. The model integrates crystallization kinetics and crystal size distribution and allows the prediction of the calcium oxalate concentration profile and the nucleation and growth rates. The critical supersaturation ratio for the nucleation of calcium oxalate crystals has been estimated as 2 and the mean crystal size as 1 μm. The crystal growth order, determined as 2.2, indicates a surface integration mechanism of crystal growth and crystal growth dispersion. The model allows the exploration of the effect of varying the input calcium oxalate concentration and the rate of water extraction, simulating real life stressors for stone formation such as dietary loading and dehydration.</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-010-0617-y</identifier><identifier>PMID: 20424925</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Algorithms ; Bioengineering ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Calcium ; calcium oxalate ; Calcium Oxalate - urine ; Chemical engineering ; Chemical Engineering - methods ; Computer Applications ; Crystallization ; Crystals ; Human Physiology ; Humans ; Hydrodynamics ; Imaging ; Input output ; Kidney Calculi - metabolism ; Kidney diseases ; Kidney stones ; Kidney Tubules, Distal - metabolism ; kidneys ; Models, Biological ; Original Article ; Population balance ; Radiology ; Reverse engineering ; Simulation ; Studies ; Urine</subject><ispartof>Medical &amp; biological engineering &amp; computing, 2010-07, Vol.48 (7), p.649-659</ispartof><rights>International Federation for Medical and Biological Engineering 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-f085db0f17f077e44e859b64a35219d837ed50527e658f1691815bd1da854da3</citedby><cites>FETCH-LOGICAL-c426t-f085db0f17f077e44e859b64a35219d837ed50527e658f1691815bd1da854da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11517-010-0617-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11517-010-0617-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20424925$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Borissova, A</creatorcontrib><creatorcontrib>Goltz, G. E</creatorcontrib><creatorcontrib>Kavanagh, J. P</creatorcontrib><creatorcontrib>Wilkins, T. A</creatorcontrib><title>Reverse engineering the kidney: modelling calcium oxalate monohydrate crystallization in the nephron</title><title>Medical &amp; biological engineering &amp; computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>Crystallization of calcium oxalate monohydrate in a section of a single kidney nephron (distal convoluted tubule) is simulated using a model adapted from industrial crystallization. The nephron fluid dynamics is represented as a crystallizer/separator series with changing volume to allow for water removal along the tubule. The model integrates crystallization kinetics and crystal size distribution and allows the prediction of the calcium oxalate concentration profile and the nucleation and growth rates. The critical supersaturation ratio for the nucleation of calcium oxalate crystals has been estimated as 2 and the mean crystal size as 1 μm. The crystal growth order, determined as 2.2, indicates a surface integration mechanism of crystal growth and crystal growth dispersion. The model allows the exploration of the effect of varying the input calcium oxalate concentration and the rate of water extraction, simulating real life stressors for stone formation such as dietary loading and dehydration.</description><subject>Algorithms</subject><subject>Bioengineering</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Calcium</subject><subject>calcium oxalate</subject><subject>Calcium Oxalate - urine</subject><subject>Chemical engineering</subject><subject>Chemical Engineering - methods</subject><subject>Computer Applications</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Hydrodynamics</subject><subject>Imaging</subject><subject>Input output</subject><subject>Kidney Calculi - metabolism</subject><subject>Kidney diseases</subject><subject>Kidney stones</subject><subject>Kidney Tubules, Distal - metabolism</subject><subject>kidneys</subject><subject>Models, Biological</subject><subject>Original Article</subject><subject>Population balance</subject><subject>Radiology</subject><subject>Reverse engineering</subject><subject>Simulation</subject><subject>Studies</subject><subject>Urine</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1v1DAQhi0EokvhB3CBqBdOgRnHjr3cUFU-pEpIUM6WN57spiT2YieI8OvrkEIlDnDyyPPMO7Yexp4ivEQA9SohSlQlIJRQ52K-xzaoBJYghLjPNoAidxD1CXuU0jUAR8nFQ3bCQXCx5XLD3Cf6TjFRQX7feaLY-X0xHqj42jlP8-tiCI76frltbN9001CEH7a3I-WOD4fZxaVu4pxGm7mfduyCLzr_K8TT8RCDf8wetLZP9OT2PGVXby-uzt-Xlx_ffTh_c1k2gtdj2YKWbgctqhaUIiFIy-2uFraSHLdOV4qcBMkV1VK3WG9Ro9w5dFZL4Wx1yl6ssccYvk2URjN0qcmvt57ClIwSNa8k1Pr_ZFUtO4XK5Nlf5HWYos-_MBIqlELgEocr1MSQUqTWHGM32DgbBLOYMqspk02ZxZSZ88yz2-BpN5D7M_FbTQb4CqTjIoXi3eZ_pT5fh1objN3HLpkvnzlgBahlrVVd3QCz2Kf1</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Borissova, A</creator><creator>Goltz, G. E</creator><creator>Kavanagh, J. P</creator><creator>Wilkins, T. A</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>7QP</scope></search><sort><creationdate>20100701</creationdate><title>Reverse engineering the kidney: modelling calcium oxalate monohydrate crystallization in the nephron</title><author>Borissova, A ; Goltz, G. E ; Kavanagh, J. P ; Wilkins, T. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-f085db0f17f077e44e859b64a35219d837ed50527e658f1691815bd1da854da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Bioengineering</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Calcium</topic><topic>calcium oxalate</topic><topic>Calcium Oxalate - urine</topic><topic>Chemical engineering</topic><topic>Chemical Engineering - methods</topic><topic>Computer Applications</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Hydrodynamics</topic><topic>Imaging</topic><topic>Input output</topic><topic>Kidney Calculi - metabolism</topic><topic>Kidney diseases</topic><topic>Kidney stones</topic><topic>Kidney Tubules, Distal - metabolism</topic><topic>kidneys</topic><topic>Models, Biological</topic><topic>Original Article</topic><topic>Population balance</topic><topic>Radiology</topic><topic>Reverse engineering</topic><topic>Simulation</topic><topic>Studies</topic><topic>Urine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borissova, A</creatorcontrib><creatorcontrib>Goltz, G. E</creatorcontrib><creatorcontrib>Kavanagh, J. P</creatorcontrib><creatorcontrib>Wilkins, T. A</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><jtitle>Medical &amp; biological engineering &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borissova, A</au><au>Goltz, G. E</au><au>Kavanagh, J. P</au><au>Wilkins, T. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reverse engineering the kidney: modelling calcium oxalate monohydrate crystallization in the nephron</atitle><jtitle>Medical &amp; biological engineering &amp; computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2010-07-01</date><risdate>2010</risdate><volume>48</volume><issue>7</issue><spage>649</spage><epage>659</epage><pages>649-659</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>Crystallization of calcium oxalate monohydrate in a section of a single kidney nephron (distal convoluted tubule) is simulated using a model adapted from industrial crystallization. The nephron fluid dynamics is represented as a crystallizer/separator series with changing volume to allow for water removal along the tubule. The model integrates crystallization kinetics and crystal size distribution and allows the prediction of the calcium oxalate concentration profile and the nucleation and growth rates. The critical supersaturation ratio for the nucleation of calcium oxalate crystals has been estimated as 2 and the mean crystal size as 1 μm. The crystal growth order, determined as 2.2, indicates a surface integration mechanism of crystal growth and crystal growth dispersion. The model allows the exploration of the effect of varying the input calcium oxalate concentration and the rate of water extraction, simulating real life stressors for stone formation such as dietary loading and dehydration.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>20424925</pmid><doi>10.1007/s11517-010-0617-y</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0140-0118
ispartof Medical & biological engineering & computing, 2010-07, Vol.48 (7), p.649-659
issn 0140-0118
1741-0444
language eng
recordid cdi_proquest_miscellaneous_746235068
source MEDLINE; Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Algorithms
Bioengineering
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Calcium
calcium oxalate
Calcium Oxalate - urine
Chemical engineering
Chemical Engineering - methods
Computer Applications
Crystallization
Crystals
Human Physiology
Humans
Hydrodynamics
Imaging
Input output
Kidney Calculi - metabolism
Kidney diseases
Kidney stones
Kidney Tubules, Distal - metabolism
kidneys
Models, Biological
Original Article
Population balance
Radiology
Reverse engineering
Simulation
Studies
Urine
title Reverse engineering the kidney: modelling calcium oxalate monohydrate crystallization in the nephron
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A04%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reverse%20engineering%20the%20kidney:%20modelling%20calcium%20oxalate%20monohydrate%20crystallization%20in%20the%20nephron&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Borissova,%20A&rft.date=2010-07-01&rft.volume=48&rft.issue=7&rft.spage=649&rft.epage=659&rft.pages=649-659&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-010-0617-y&rft_dat=%3Cproquest_cross%3E733352147%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=503154418&rft_id=info:pmid/20424925&rfr_iscdi=true