Reverse engineering the kidney: modelling calcium oxalate monohydrate crystallization in the nephron
Crystallization of calcium oxalate monohydrate in a section of a single kidney nephron (distal convoluted tubule) is simulated using a model adapted from industrial crystallization. The nephron fluid dynamics is represented as a crystallizer/separator series with changing volume to allow for water r...
Gespeichert in:
Veröffentlicht in: | Medical & biological engineering & computing 2010-07, Vol.48 (7), p.649-659 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 659 |
---|---|
container_issue | 7 |
container_start_page | 649 |
container_title | Medical & biological engineering & computing |
container_volume | 48 |
creator | Borissova, A Goltz, G. E Kavanagh, J. P Wilkins, T. A |
description | Crystallization of calcium oxalate monohydrate in a section of a single kidney nephron (distal convoluted tubule) is simulated using a model adapted from industrial crystallization. The nephron fluid dynamics is represented as a crystallizer/separator series with changing volume to allow for water removal along the tubule. The model integrates crystallization kinetics and crystal size distribution and allows the prediction of the calcium oxalate concentration profile and the nucleation and growth rates. The critical supersaturation ratio for the nucleation of calcium oxalate crystals has been estimated as 2 and the mean crystal size as 1 μm. The crystal growth order, determined as 2.2, indicates a surface integration mechanism of crystal growth and crystal growth dispersion. The model allows the exploration of the effect of varying the input calcium oxalate concentration and the rate of water extraction, simulating real life stressors for stone formation such as dietary loading and dehydration. |
doi_str_mv | 10.1007/s11517-010-0617-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746235068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733352147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-f085db0f17f077e44e859b64a35219d837ed50527e658f1691815bd1da854da3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhB3CBqBdOgRnHjr3cUFU-pEpIUM6WN57spiT2YieI8OvrkEIlDnDyyPPMO7Yexp4ivEQA9SohSlQlIJRQ52K-xzaoBJYghLjPNoAidxD1CXuU0jUAR8nFQ3bCQXCx5XLD3Cf6TjFRQX7feaLY-X0xHqj42jlP8-tiCI76frltbN9001CEH7a3I-WOD4fZxaVu4pxGm7mfduyCLzr_K8TT8RCDf8wetLZP9OT2PGVXby-uzt-Xlx_ffTh_c1k2gtdj2YKWbgctqhaUIiFIy-2uFraSHLdOV4qcBMkV1VK3WG9Ro9w5dFZL4Wx1yl6ssccYvk2URjN0qcmvt57ClIwSNa8k1Pr_ZFUtO4XK5Nlf5HWYos-_MBIqlELgEocr1MSQUqTWHGM32DgbBLOYMqspk02ZxZSZ88yz2-BpN5D7M_FbTQb4CqTjIoXi3eZ_pT5fh1objN3HLpkvnzlgBahlrVVd3QCz2Kf1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>503154418</pqid></control><display><type>article</type><title>Reverse engineering the kidney: modelling calcium oxalate monohydrate crystallization in the nephron</title><source>MEDLINE</source><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Borissova, A ; Goltz, G. E ; Kavanagh, J. P ; Wilkins, T. A</creator><creatorcontrib>Borissova, A ; Goltz, G. E ; Kavanagh, J. P ; Wilkins, T. A</creatorcontrib><description>Crystallization of calcium oxalate monohydrate in a section of a single kidney nephron (distal convoluted tubule) is simulated using a model adapted from industrial crystallization. The nephron fluid dynamics is represented as a crystallizer/separator series with changing volume to allow for water removal along the tubule. The model integrates crystallization kinetics and crystal size distribution and allows the prediction of the calcium oxalate concentration profile and the nucleation and growth rates. The critical supersaturation ratio for the nucleation of calcium oxalate crystals has been estimated as 2 and the mean crystal size as 1 μm. The crystal growth order, determined as 2.2, indicates a surface integration mechanism of crystal growth and crystal growth dispersion. The model allows the exploration of the effect of varying the input calcium oxalate concentration and the rate of water extraction, simulating real life stressors for stone formation such as dietary loading and dehydration.</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-010-0617-y</identifier><identifier>PMID: 20424925</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Algorithms ; Bioengineering ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Calcium ; calcium oxalate ; Calcium Oxalate - urine ; Chemical engineering ; Chemical Engineering - methods ; Computer Applications ; Crystallization ; Crystals ; Human Physiology ; Humans ; Hydrodynamics ; Imaging ; Input output ; Kidney Calculi - metabolism ; Kidney diseases ; Kidney stones ; Kidney Tubules, Distal - metabolism ; kidneys ; Models, Biological ; Original Article ; Population balance ; Radiology ; Reverse engineering ; Simulation ; Studies ; Urine</subject><ispartof>Medical & biological engineering & computing, 2010-07, Vol.48 (7), p.649-659</ispartof><rights>International Federation for Medical and Biological Engineering 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-f085db0f17f077e44e859b64a35219d837ed50527e658f1691815bd1da854da3</citedby><cites>FETCH-LOGICAL-c426t-f085db0f17f077e44e859b64a35219d837ed50527e658f1691815bd1da854da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11517-010-0617-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11517-010-0617-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20424925$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Borissova, A</creatorcontrib><creatorcontrib>Goltz, G. E</creatorcontrib><creatorcontrib>Kavanagh, J. P</creatorcontrib><creatorcontrib>Wilkins, T. A</creatorcontrib><title>Reverse engineering the kidney: modelling calcium oxalate monohydrate crystallization in the nephron</title><title>Medical & biological engineering & computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>Crystallization of calcium oxalate monohydrate in a section of a single kidney nephron (distal convoluted tubule) is simulated using a model adapted from industrial crystallization. The nephron fluid dynamics is represented as a crystallizer/separator series with changing volume to allow for water removal along the tubule. The model integrates crystallization kinetics and crystal size distribution and allows the prediction of the calcium oxalate concentration profile and the nucleation and growth rates. The critical supersaturation ratio for the nucleation of calcium oxalate crystals has been estimated as 2 and the mean crystal size as 1 μm. The crystal growth order, determined as 2.2, indicates a surface integration mechanism of crystal growth and crystal growth dispersion. The model allows the exploration of the effect of varying the input calcium oxalate concentration and the rate of water extraction, simulating real life stressors for stone formation such as dietary loading and dehydration.</description><subject>Algorithms</subject><subject>Bioengineering</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Calcium</subject><subject>calcium oxalate</subject><subject>Calcium Oxalate - urine</subject><subject>Chemical engineering</subject><subject>Chemical Engineering - methods</subject><subject>Computer Applications</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Hydrodynamics</subject><subject>Imaging</subject><subject>Input output</subject><subject>Kidney Calculi - metabolism</subject><subject>Kidney diseases</subject><subject>Kidney stones</subject><subject>Kidney Tubules, Distal - metabolism</subject><subject>kidneys</subject><subject>Models, Biological</subject><subject>Original Article</subject><subject>Population balance</subject><subject>Radiology</subject><subject>Reverse engineering</subject><subject>Simulation</subject><subject>Studies</subject><subject>Urine</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1v1DAQhi0EokvhB3CBqBdOgRnHjr3cUFU-pEpIUM6WN57spiT2YieI8OvrkEIlDnDyyPPMO7Yexp4ivEQA9SohSlQlIJRQ52K-xzaoBJYghLjPNoAidxD1CXuU0jUAR8nFQ3bCQXCx5XLD3Cf6TjFRQX7feaLY-X0xHqj42jlP8-tiCI76frltbN9001CEH7a3I-WOD4fZxaVu4pxGm7mfduyCLzr_K8TT8RCDf8wetLZP9OT2PGVXby-uzt-Xlx_ffTh_c1k2gtdj2YKWbgctqhaUIiFIy-2uFraSHLdOV4qcBMkV1VK3WG9Ro9w5dFZL4Wx1yl6ssccYvk2URjN0qcmvt57ClIwSNa8k1Pr_ZFUtO4XK5Nlf5HWYos-_MBIqlELgEocr1MSQUqTWHGM32DgbBLOYMqspk02ZxZSZ88yz2-BpN5D7M_FbTQb4CqTjIoXi3eZ_pT5fh1objN3HLpkvnzlgBahlrVVd3QCz2Kf1</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Borissova, A</creator><creator>Goltz, G. E</creator><creator>Kavanagh, J. P</creator><creator>Wilkins, T. A</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>7QP</scope></search><sort><creationdate>20100701</creationdate><title>Reverse engineering the kidney: modelling calcium oxalate monohydrate crystallization in the nephron</title><author>Borissova, A ; Goltz, G. E ; Kavanagh, J. P ; Wilkins, T. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-f085db0f17f077e44e859b64a35219d837ed50527e658f1691815bd1da854da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Bioengineering</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Calcium</topic><topic>calcium oxalate</topic><topic>Calcium Oxalate - urine</topic><topic>Chemical engineering</topic><topic>Chemical Engineering - methods</topic><topic>Computer Applications</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Hydrodynamics</topic><topic>Imaging</topic><topic>Input output</topic><topic>Kidney Calculi - metabolism</topic><topic>Kidney diseases</topic><topic>Kidney stones</topic><topic>Kidney Tubules, Distal - metabolism</topic><topic>kidneys</topic><topic>Models, Biological</topic><topic>Original Article</topic><topic>Population balance</topic><topic>Radiology</topic><topic>Reverse engineering</topic><topic>Simulation</topic><topic>Studies</topic><topic>Urine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borissova, A</creatorcontrib><creatorcontrib>Goltz, G. E</creatorcontrib><creatorcontrib>Kavanagh, J. P</creatorcontrib><creatorcontrib>Wilkins, T. A</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><jtitle>Medical & biological engineering & computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borissova, A</au><au>Goltz, G. E</au><au>Kavanagh, J. P</au><au>Wilkins, T. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reverse engineering the kidney: modelling calcium oxalate monohydrate crystallization in the nephron</atitle><jtitle>Medical & biological engineering & computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2010-07-01</date><risdate>2010</risdate><volume>48</volume><issue>7</issue><spage>649</spage><epage>659</epage><pages>649-659</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>Crystallization of calcium oxalate monohydrate in a section of a single kidney nephron (distal convoluted tubule) is simulated using a model adapted from industrial crystallization. The nephron fluid dynamics is represented as a crystallizer/separator series with changing volume to allow for water removal along the tubule. The model integrates crystallization kinetics and crystal size distribution and allows the prediction of the calcium oxalate concentration profile and the nucleation and growth rates. The critical supersaturation ratio for the nucleation of calcium oxalate crystals has been estimated as 2 and the mean crystal size as 1 μm. The crystal growth order, determined as 2.2, indicates a surface integration mechanism of crystal growth and crystal growth dispersion. The model allows the exploration of the effect of varying the input calcium oxalate concentration and the rate of water extraction, simulating real life stressors for stone formation such as dietary loading and dehydration.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>20424925</pmid><doi>10.1007/s11517-010-0617-y</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-0118 |
ispartof | Medical & biological engineering & computing, 2010-07, Vol.48 (7), p.649-659 |
issn | 0140-0118 1741-0444 |
language | eng |
recordid | cdi_proquest_miscellaneous_746235068 |
source | MEDLINE; Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Algorithms Bioengineering Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Calcium calcium oxalate Calcium Oxalate - urine Chemical engineering Chemical Engineering - methods Computer Applications Crystallization Crystals Human Physiology Humans Hydrodynamics Imaging Input output Kidney Calculi - metabolism Kidney diseases Kidney stones Kidney Tubules, Distal - metabolism kidneys Models, Biological Original Article Population balance Radiology Reverse engineering Simulation Studies Urine |
title | Reverse engineering the kidney: modelling calcium oxalate monohydrate crystallization in the nephron |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A04%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reverse%20engineering%20the%20kidney:%20modelling%20calcium%20oxalate%20monohydrate%20crystallization%20in%20the%20nephron&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Borissova,%20A&rft.date=2010-07-01&rft.volume=48&rft.issue=7&rft.spage=649&rft.epage=659&rft.pages=649-659&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-010-0617-y&rft_dat=%3Cproquest_cross%3E733352147%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=503154418&rft_id=info:pmid/20424925&rfr_iscdi=true |