Differential androgen receptor signals in different cells explain why androgen-deprivation therapy of prostate cancer fails
Prostate cancer is one of the major causes of cancer-related death in the western world. Androgen-deprivation therapy (ADT) for the suppression of androgens binding to the androgen receptor (AR) has been the norm of prostate cancer treatment. Despite early success to suppress prostate tumor growth,...
Gespeichert in:
Veröffentlicht in: | Oncogene 2010-06, Vol.29 (25), p.3593-3604 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3604 |
---|---|
container_issue | 25 |
container_start_page | 3593 |
container_title | Oncogene |
container_volume | 29 |
creator | Niu, Y Chang, T-M Yeh, S Ma, W-L Wang, Y Z Chang, C |
description | Prostate cancer is one of the major causes of cancer-related death in the western world. Androgen-deprivation therapy (ADT) for the suppression of androgens binding to the androgen receptor (AR) has been the norm of prostate cancer treatment. Despite early success to suppress prostate tumor growth, ADT eventually fails leading to recurrent tumor growth in a hormone-refractory manner, even though AR remains to function in hormone-refractory prostate cancer. Interestingly, some prostate cancer survivors who received androgen replacement therapy had improved quality of life without adverse effect on their cancer progression. These contrasting clinical data suggest that differential androgen/AR signals in individual cells of prostate tumors can exist in the same or different patients, and may be used to explain why ADT of prostate cancer fails. Such a hypothesis is supported by the results obtained from transgenic mice with selective knockout of AR in prostatic stromal vs epithelial cells and orthotopic transplants of various human prostate cancer cell lines with AR over-expression or knockout. These studies concluded that AR functions as a stimulator for prostate cancer proliferation and metastasis in stromal cells, as a survival factor of prostatic cancer epithelial luminal cells, and as a suppressor for prostate cancer basal intermediate cell growth and metastasis. These dual yet opposite functions of the stromal and epithelial AR may challenge the current ADT to battle prostate cancer and should be taken into consideration when developing new AR-targeting therapies in selective prostate cancer cells. |
doi_str_mv | 10.1038/onc.2010.121 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_746233949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A230866522</galeid><sourcerecordid>A230866522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c641t-c18fb8125702b340777534965d9eb8642706e80a8e78674ebdf50e73c63c240c3</originalsourceid><addsrcrecordid>eNqFkstv1DAQhyMEoqVw44wsEOJClvEjdnKsylOqxAXOltcZb11lncXOAiv-eSba7VYgKuSD5fE3719VPeWw4CDbN2PyCwHzS_B71SlXRtdN06n71Sl0DdSdkOKkelTKNQCYDsTD6kSAUiAMnFa_3sYQMGOaohuYS30eV5hYRo-bacysxFVyQ2Exsf6GZB4HMuHPzeDI_uNqd3Sse9zk-N1NcUxsusLsNjs2BrbJY5nchMy75DGz4OJQHlcPAsXGJ4f7rPr6_t2Xi4_15ecPny7OL2uvFZ9qz9uwbLloDIilVGCMaaTqdNN3uGy1oj40tuBaNK02Cpd9aACN9Fp6ocDLs-rVPi5V8W2LZbLrWOYeXMJxW6xRWkjZqe7_pJQSQDeayOd_kdfjNs-jsg2n2rRQnKAXd0GCWlNcKNrOkVq5AW1MYZyy83Niey4ktFo3YqYW_6Do9LiOfkwYItn_cHi9d_A0-5IxWNrM2uWd5WBn5VhSjp2VY0k5hD871LpdrrE_wjdSIeDlAXDFuyFk2mQstxwNpulAElfvuUJfaYX5tuk7ErM9n9y0zXgMSNDMzMhvoBDiyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641412492</pqid></control><display><type>article</type><title>Differential androgen receptor signals in different cells explain why androgen-deprivation therapy of prostate cancer fails</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Nature Journals Online</source><source>Alma/SFX Local Collection</source><creator>Niu, Y ; Chang, T-M ; Yeh, S ; Ma, W-L ; Wang, Y Z ; Chang, C</creator><creatorcontrib>Niu, Y ; Chang, T-M ; Yeh, S ; Ma, W-L ; Wang, Y Z ; Chang, C</creatorcontrib><description>Prostate cancer is one of the major causes of cancer-related death in the western world. Androgen-deprivation therapy (ADT) for the suppression of androgens binding to the androgen receptor (AR) has been the norm of prostate cancer treatment. Despite early success to suppress prostate tumor growth, ADT eventually fails leading to recurrent tumor growth in a hormone-refractory manner, even though AR remains to function in hormone-refractory prostate cancer. Interestingly, some prostate cancer survivors who received androgen replacement therapy had improved quality of life without adverse effect on their cancer progression. These contrasting clinical data suggest that differential androgen/AR signals in individual cells of prostate tumors can exist in the same or different patients, and may be used to explain why ADT of prostate cancer fails. Such a hypothesis is supported by the results obtained from transgenic mice with selective knockout of AR in prostatic stromal vs epithelial cells and orthotopic transplants of various human prostate cancer cell lines with AR over-expression or knockout. These studies concluded that AR functions as a stimulator for prostate cancer proliferation and metastasis in stromal cells, as a survival factor of prostatic cancer epithelial luminal cells, and as a suppressor for prostate cancer basal intermediate cell growth and metastasis. These dual yet opposite functions of the stromal and epithelial AR may challenge the current ADT to battle prostate cancer and should be taken into consideration when developing new AR-targeting therapies in selective prostate cancer cells.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/onc.2010.121</identifier><identifier>PMID: 20440270</identifier><identifier>CODEN: ONCNES</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/67/322 ; 631/80/86/2363 ; 692/699/67/589/466 ; 692/700/565/1331/238 ; Androgen receptors ; Androgens ; Androgens - metabolism ; Androgens - therapeutic use ; Animals ; Apoptosis ; Biological and medical sciences ; Care and treatment ; Cell Biology ; Cell physiology ; Cell proliferation ; Cell receptors ; Cell structures and functions ; Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes ; Cells ; Cellular signal transduction ; Development and progression ; Disease Progression ; Epithelial cells ; Fundamental and applied biological sciences. Psychology ; Genetic aspects ; Health aspects ; Hormone replacement therapy ; Hormone therapy ; Human Genetics ; Humans ; Internal Medicine ; Male ; Medical sciences ; Medicine ; Medicine & Public Health ; Metastases ; Metastasis ; Miscellaneous ; Molecular and cellular biology ; Nephrology. Urinary tract diseases ; Neurons ; Oncology ; Overexpression ; Prostate cancer ; Prostatic Neoplasms - metabolism ; Prostatic Neoplasms - pathology ; Prostatic Neoplasms - therapy ; Quality of life ; Receptors, Androgen - metabolism ; review ; Signal Transduction ; Stromal cells ; Survival factor ; Transgenic mice ; Treatment Outcome ; Tumor cell lines ; Tumors of the urinary system ; Urinary tract. Prostate gland</subject><ispartof>Oncogene, 2010-06, Vol.29 (25), p.3593-3604</ispartof><rights>Macmillan Publishers Limited 2010</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2010 Nature Publishing Group</rights><rights>Macmillan Publishers Limited 2010.</rights><rights>Copyright Nature Publishing Group Jun 24, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c641t-c18fb8125702b340777534965d9eb8642706e80a8e78674ebdf50e73c63c240c3</citedby><cites>FETCH-LOGICAL-c641t-c18fb8125702b340777534965d9eb8642706e80a8e78674ebdf50e73c63c240c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2727,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23005903$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20440270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Niu, Y</creatorcontrib><creatorcontrib>Chang, T-M</creatorcontrib><creatorcontrib>Yeh, S</creatorcontrib><creatorcontrib>Ma, W-L</creatorcontrib><creatorcontrib>Wang, Y Z</creatorcontrib><creatorcontrib>Chang, C</creatorcontrib><title>Differential androgen receptor signals in different cells explain why androgen-deprivation therapy of prostate cancer fails</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Prostate cancer is one of the major causes of cancer-related death in the western world. Androgen-deprivation therapy (ADT) for the suppression of androgens binding to the androgen receptor (AR) has been the norm of prostate cancer treatment. Despite early success to suppress prostate tumor growth, ADT eventually fails leading to recurrent tumor growth in a hormone-refractory manner, even though AR remains to function in hormone-refractory prostate cancer. Interestingly, some prostate cancer survivors who received androgen replacement therapy had improved quality of life without adverse effect on their cancer progression. These contrasting clinical data suggest that differential androgen/AR signals in individual cells of prostate tumors can exist in the same or different patients, and may be used to explain why ADT of prostate cancer fails. Such a hypothesis is supported by the results obtained from transgenic mice with selective knockout of AR in prostatic stromal vs epithelial cells and orthotopic transplants of various human prostate cancer cell lines with AR over-expression or knockout. These studies concluded that AR functions as a stimulator for prostate cancer proliferation and metastasis in stromal cells, as a survival factor of prostatic cancer epithelial luminal cells, and as a suppressor for prostate cancer basal intermediate cell growth and metastasis. These dual yet opposite functions of the stromal and epithelial AR may challenge the current ADT to battle prostate cancer and should be taken into consideration when developing new AR-targeting therapies in selective prostate cancer cells.</description><subject>631/67/322</subject><subject>631/80/86/2363</subject><subject>692/699/67/589/466</subject><subject>692/700/565/1331/238</subject><subject>Androgen receptors</subject><subject>Androgens</subject><subject>Androgens - metabolism</subject><subject>Androgens - therapeutic use</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Biological and medical sciences</subject><subject>Care and treatment</subject><subject>Cell Biology</subject><subject>Cell physiology</subject><subject>Cell proliferation</subject><subject>Cell receptors</subject><subject>Cell structures and functions</subject><subject>Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes</subject><subject>Cells</subject><subject>Cellular signal transduction</subject><subject>Development and progression</subject><subject>Disease Progression</subject><subject>Epithelial cells</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Hormone replacement therapy</subject><subject>Hormone therapy</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Miscellaneous</subject><subject>Molecular and cellular biology</subject><subject>Nephrology. Urinary tract diseases</subject><subject>Neurons</subject><subject>Oncology</subject><subject>Overexpression</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms - metabolism</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Prostatic Neoplasms - therapy</subject><subject>Quality of life</subject><subject>Receptors, Androgen - metabolism</subject><subject>review</subject><subject>Signal Transduction</subject><subject>Stromal cells</subject><subject>Survival factor</subject><subject>Transgenic mice</subject><subject>Treatment Outcome</subject><subject>Tumor cell lines</subject><subject>Tumors of the urinary system</subject><subject>Urinary tract. Prostate gland</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkstv1DAQhyMEoqVw44wsEOJClvEjdnKsylOqxAXOltcZb11lncXOAiv-eSba7VYgKuSD5fE3719VPeWw4CDbN2PyCwHzS_B71SlXRtdN06n71Sl0DdSdkOKkelTKNQCYDsTD6kSAUiAMnFa_3sYQMGOaohuYS30eV5hYRo-bacysxFVyQ2Exsf6GZB4HMuHPzeDI_uNqd3Sse9zk-N1NcUxsusLsNjs2BrbJY5nchMy75DGz4OJQHlcPAsXGJ4f7rPr6_t2Xi4_15ecPny7OL2uvFZ9qz9uwbLloDIilVGCMaaTqdNN3uGy1oj40tuBaNK02Cpd9aACN9Fp6ocDLs-rVPi5V8W2LZbLrWOYeXMJxW6xRWkjZqe7_pJQSQDeayOd_kdfjNs-jsg2n2rRQnKAXd0GCWlNcKNrOkVq5AW1MYZyy83Niey4ktFo3YqYW_6Do9LiOfkwYItn_cHi9d_A0-5IxWNrM2uWd5WBn5VhSjp2VY0k5hD871LpdrrE_wjdSIeDlAXDFuyFk2mQstxwNpulAElfvuUJfaYX5tuk7ErM9n9y0zXgMSNDMzMhvoBDiyQ</recordid><startdate>20100624</startdate><enddate>20100624</enddate><creator>Niu, Y</creator><creator>Chang, T-M</creator><creator>Yeh, S</creator><creator>Ma, W-L</creator><creator>Wang, Y Z</creator><creator>Chang, C</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20100624</creationdate><title>Differential androgen receptor signals in different cells explain why androgen-deprivation therapy of prostate cancer fails</title><author>Niu, Y ; Chang, T-M ; Yeh, S ; Ma, W-L ; Wang, Y Z ; Chang, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c641t-c18fb8125702b340777534965d9eb8642706e80a8e78674ebdf50e73c63c240c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>631/67/322</topic><topic>631/80/86/2363</topic><topic>692/699/67/589/466</topic><topic>692/700/565/1331/238</topic><topic>Androgen receptors</topic><topic>Androgens</topic><topic>Androgens - metabolism</topic><topic>Androgens - therapeutic use</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Biological and medical sciences</topic><topic>Care and treatment</topic><topic>Cell Biology</topic><topic>Cell physiology</topic><topic>Cell proliferation</topic><topic>Cell receptors</topic><topic>Cell structures and functions</topic><topic>Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes</topic><topic>Cells</topic><topic>Cellular signal transduction</topic><topic>Development and progression</topic><topic>Disease Progression</topic><topic>Epithelial cells</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Hormone replacement therapy</topic><topic>Hormone therapy</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Miscellaneous</topic><topic>Molecular and cellular biology</topic><topic>Nephrology. Urinary tract diseases</topic><topic>Neurons</topic><topic>Oncology</topic><topic>Overexpression</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms - metabolism</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Prostatic Neoplasms - therapy</topic><topic>Quality of life</topic><topic>Receptors, Androgen - metabolism</topic><topic>review</topic><topic>Signal Transduction</topic><topic>Stromal cells</topic><topic>Survival factor</topic><topic>Transgenic mice</topic><topic>Treatment Outcome</topic><topic>Tumor cell lines</topic><topic>Tumors of the urinary system</topic><topic>Urinary tract. Prostate gland</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Y</creatorcontrib><creatorcontrib>Chang, T-M</creatorcontrib><creatorcontrib>Yeh, S</creatorcontrib><creatorcontrib>Ma, W-L</creatorcontrib><creatorcontrib>Wang, Y Z</creatorcontrib><creatorcontrib>Chang, C</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Y</au><au>Chang, T-M</au><au>Yeh, S</au><au>Ma, W-L</au><au>Wang, Y Z</au><au>Chang, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential androgen receptor signals in different cells explain why androgen-deprivation therapy of prostate cancer fails</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2010-06-24</date><risdate>2010</risdate><volume>29</volume><issue>25</issue><spage>3593</spage><epage>3604</epage><pages>3593-3604</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><coden>ONCNES</coden><abstract>Prostate cancer is one of the major causes of cancer-related death in the western world. Androgen-deprivation therapy (ADT) for the suppression of androgens binding to the androgen receptor (AR) has been the norm of prostate cancer treatment. Despite early success to suppress prostate tumor growth, ADT eventually fails leading to recurrent tumor growth in a hormone-refractory manner, even though AR remains to function in hormone-refractory prostate cancer. Interestingly, some prostate cancer survivors who received androgen replacement therapy had improved quality of life without adverse effect on their cancer progression. These contrasting clinical data suggest that differential androgen/AR signals in individual cells of prostate tumors can exist in the same or different patients, and may be used to explain why ADT of prostate cancer fails. Such a hypothesis is supported by the results obtained from transgenic mice with selective knockout of AR in prostatic stromal vs epithelial cells and orthotopic transplants of various human prostate cancer cell lines with AR over-expression or knockout. These studies concluded that AR functions as a stimulator for prostate cancer proliferation and metastasis in stromal cells, as a survival factor of prostatic cancer epithelial luminal cells, and as a suppressor for prostate cancer basal intermediate cell growth and metastasis. These dual yet opposite functions of the stromal and epithelial AR may challenge the current ADT to battle prostate cancer and should be taken into consideration when developing new AR-targeting therapies in selective prostate cancer cells.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>20440270</pmid><doi>10.1038/onc.2010.121</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-9232 |
ispartof | Oncogene, 2010-06, Vol.29 (25), p.3593-3604 |
issn | 0950-9232 1476-5594 |
language | eng |
recordid | cdi_proquest_miscellaneous_746233949 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Nature Journals Online; Alma/SFX Local Collection |
subjects | 631/67/322 631/80/86/2363 692/699/67/589/466 692/700/565/1331/238 Androgen receptors Androgens Androgens - metabolism Androgens - therapeutic use Animals Apoptosis Biological and medical sciences Care and treatment Cell Biology Cell physiology Cell proliferation Cell receptors Cell structures and functions Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes Cells Cellular signal transduction Development and progression Disease Progression Epithelial cells Fundamental and applied biological sciences. Psychology Genetic aspects Health aspects Hormone replacement therapy Hormone therapy Human Genetics Humans Internal Medicine Male Medical sciences Medicine Medicine & Public Health Metastases Metastasis Miscellaneous Molecular and cellular biology Nephrology. Urinary tract diseases Neurons Oncology Overexpression Prostate cancer Prostatic Neoplasms - metabolism Prostatic Neoplasms - pathology Prostatic Neoplasms - therapy Quality of life Receptors, Androgen - metabolism review Signal Transduction Stromal cells Survival factor Transgenic mice Treatment Outcome Tumor cell lines Tumors of the urinary system Urinary tract. Prostate gland |
title | Differential androgen receptor signals in different cells explain why androgen-deprivation therapy of prostate cancer fails |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A17%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20androgen%20receptor%20signals%20in%20different%20cells%20explain%20why%20androgen-deprivation%20therapy%20of%20prostate%20cancer%20fails&rft.jtitle=Oncogene&rft.au=Niu,%20Y&rft.date=2010-06-24&rft.volume=29&rft.issue=25&rft.spage=3593&rft.epage=3604&rft.pages=3593-3604&rft.issn=0950-9232&rft.eissn=1476-5594&rft.coden=ONCNES&rft_id=info:doi/10.1038/onc.2010.121&rft_dat=%3Cgale_proqu%3EA230866522%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641412492&rft_id=info:pmid/20440270&rft_galeid=A230866522&rfr_iscdi=true |