Detection and classification of masses in breast ultrasound images

Breast cancer can be treated most effectively when detected in its early stage. Due to the superiority to mammography in its ability to detect focal abnormalities in the dense breasts of adolescent women, sonography has become an important adjunct to mammography in breast cancer detection and has be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Digital signal processing 2010-05, Vol.20 (3), p.824-836
Hauptverfasser: Shi, Xiangjun, Cheng, H.D., Hu, Liming, Ju, Wen, Tian, Jiawei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 836
container_issue 3
container_start_page 824
container_title Digital signal processing
container_volume 20
creator Shi, Xiangjun
Cheng, H.D.
Hu, Liming
Ju, Wen
Tian, Jiawei
description Breast cancer can be treated most effectively when detected in its early stage. Due to the superiority to mammography in its ability to detect focal abnormalities in the dense breasts of adolescent women, sonography has become an important adjunct to mammography in breast cancer detection and has been especially useful in distinguishing cysts from solid tumors. In this paper, we develop a novel CAD system based on fuzzy support vector machine to automatically detect and classify mass using ultrasound (US) images. The experimental results show that the proposed system greatly improves the five objective measurements and the area ( A z ) under the ROC curve compared with those of other classification methods, and radiologist assessments, and the proposed approach will be very valuable for breast cancer control.
doi_str_mv 10.1016/j.dsp.2009.10.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746229487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1051200409001882</els_id><sourcerecordid>746229487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-37a9f010428349f5102a31a090a7a1aca39046be72b39a6611d0c5b207dcd6e53</originalsourceid><addsrcrecordid>eNp9UE1PwzAMjRBIjMEP4NYbpxanSdtFnGB8SpO4wDlyUxdl6toRt0j8e1LGmZPt5_es5yfEpYRMgiyvt1nD-ywHMHHOQMKRWEgwRaqVUsdzX8g0rvWpOGPeAkCl83Ih7u5pJDf6oU-wbxLXIbNvvcNfaGiTXQSIE98ndSDkMZm6MSAPU2T7HX4Qn4uTFjumi7-6FO-PD2_r53Tz-vSyvt2kTpliTFWFpo3GdL5S2rSFhByVRDCAFUp0qAzosqYqr5XBspSyAVfUOVSNa0oq1FJcHe7uw_A5EY9259lR12FPw8S20mWeG72qIlMemC4MzIFauw_Ra_i2Euwcl93aGJed45qh6Cpqbg4aii98eQqWnafeUeNDDMg2g_9H_QN1l3IJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746229487</pqid></control><display><type>article</type><title>Detection and classification of masses in breast ultrasound images</title><source>Elsevier ScienceDirect Journals</source><creator>Shi, Xiangjun ; Cheng, H.D. ; Hu, Liming ; Ju, Wen ; Tian, Jiawei</creator><creatorcontrib>Shi, Xiangjun ; Cheng, H.D. ; Hu, Liming ; Ju, Wen ; Tian, Jiawei</creatorcontrib><description>Breast cancer can be treated most effectively when detected in its early stage. Due to the superiority to mammography in its ability to detect focal abnormalities in the dense breasts of adolescent women, sonography has become an important adjunct to mammography in breast cancer detection and has been especially useful in distinguishing cysts from solid tumors. In this paper, we develop a novel CAD system based on fuzzy support vector machine to automatically detect and classify mass using ultrasound (US) images. The experimental results show that the proposed system greatly improves the five objective measurements and the area ( A z ) under the ROC curve compared with those of other classification methods, and radiologist assessments, and the proposed approach will be very valuable for breast cancer control.</description><identifier>ISSN: 1051-2004</identifier><identifier>EISSN: 1095-4333</identifier><identifier>DOI: 10.1016/j.dsp.2009.10.010</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Breast cancer ; Breast sonography ; Computer-aided diagnosis (CAD) ; Feature selection ; Fuzzy support vector machine (FSVM) ; Mass classification ; Ultrasound (US) images</subject><ispartof>Digital signal processing, 2010-05, Vol.20 (3), p.824-836</ispartof><rights>2009 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-37a9f010428349f5102a31a090a7a1aca39046be72b39a6611d0c5b207dcd6e53</citedby><cites>FETCH-LOGICAL-c395t-37a9f010428349f5102a31a090a7a1aca39046be72b39a6611d0c5b207dcd6e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1051200409001882$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Shi, Xiangjun</creatorcontrib><creatorcontrib>Cheng, H.D.</creatorcontrib><creatorcontrib>Hu, Liming</creatorcontrib><creatorcontrib>Ju, Wen</creatorcontrib><creatorcontrib>Tian, Jiawei</creatorcontrib><title>Detection and classification of masses in breast ultrasound images</title><title>Digital signal processing</title><description>Breast cancer can be treated most effectively when detected in its early stage. Due to the superiority to mammography in its ability to detect focal abnormalities in the dense breasts of adolescent women, sonography has become an important adjunct to mammography in breast cancer detection and has been especially useful in distinguishing cysts from solid tumors. In this paper, we develop a novel CAD system based on fuzzy support vector machine to automatically detect and classify mass using ultrasound (US) images. The experimental results show that the proposed system greatly improves the five objective measurements and the area ( A z ) under the ROC curve compared with those of other classification methods, and radiologist assessments, and the proposed approach will be very valuable for breast cancer control.</description><subject>Breast cancer</subject><subject>Breast sonography</subject><subject>Computer-aided diagnosis (CAD)</subject><subject>Feature selection</subject><subject>Fuzzy support vector machine (FSVM)</subject><subject>Mass classification</subject><subject>Ultrasound (US) images</subject><issn>1051-2004</issn><issn>1095-4333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UE1PwzAMjRBIjMEP4NYbpxanSdtFnGB8SpO4wDlyUxdl6toRt0j8e1LGmZPt5_es5yfEpYRMgiyvt1nD-ywHMHHOQMKRWEgwRaqVUsdzX8g0rvWpOGPeAkCl83Ih7u5pJDf6oU-wbxLXIbNvvcNfaGiTXQSIE98ndSDkMZm6MSAPU2T7HX4Qn4uTFjumi7-6FO-PD2_r53Tz-vSyvt2kTpliTFWFpo3GdL5S2rSFhByVRDCAFUp0qAzosqYqr5XBspSyAVfUOVSNa0oq1FJcHe7uw_A5EY9259lR12FPw8S20mWeG72qIlMemC4MzIFauw_Ra_i2Euwcl93aGJed45qh6Cpqbg4aii98eQqWnafeUeNDDMg2g_9H_QN1l3IJ</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Shi, Xiangjun</creator><creator>Cheng, H.D.</creator><creator>Hu, Liming</creator><creator>Ju, Wen</creator><creator>Tian, Jiawei</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20100501</creationdate><title>Detection and classification of masses in breast ultrasound images</title><author>Shi, Xiangjun ; Cheng, H.D. ; Hu, Liming ; Ju, Wen ; Tian, Jiawei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-37a9f010428349f5102a31a090a7a1aca39046be72b39a6611d0c5b207dcd6e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Breast cancer</topic><topic>Breast sonography</topic><topic>Computer-aided diagnosis (CAD)</topic><topic>Feature selection</topic><topic>Fuzzy support vector machine (FSVM)</topic><topic>Mass classification</topic><topic>Ultrasound (US) images</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Xiangjun</creatorcontrib><creatorcontrib>Cheng, H.D.</creatorcontrib><creatorcontrib>Hu, Liming</creatorcontrib><creatorcontrib>Ju, Wen</creatorcontrib><creatorcontrib>Tian, Jiawei</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Digital signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Xiangjun</au><au>Cheng, H.D.</au><au>Hu, Liming</au><au>Ju, Wen</au><au>Tian, Jiawei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection and classification of masses in breast ultrasound images</atitle><jtitle>Digital signal processing</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>20</volume><issue>3</issue><spage>824</spage><epage>836</epage><pages>824-836</pages><issn>1051-2004</issn><eissn>1095-4333</eissn><abstract>Breast cancer can be treated most effectively when detected in its early stage. Due to the superiority to mammography in its ability to detect focal abnormalities in the dense breasts of adolescent women, sonography has become an important adjunct to mammography in breast cancer detection and has been especially useful in distinguishing cysts from solid tumors. In this paper, we develop a novel CAD system based on fuzzy support vector machine to automatically detect and classify mass using ultrasound (US) images. The experimental results show that the proposed system greatly improves the five objective measurements and the area ( A z ) under the ROC curve compared with those of other classification methods, and radiologist assessments, and the proposed approach will be very valuable for breast cancer control.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.dsp.2009.10.010</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1051-2004
ispartof Digital signal processing, 2010-05, Vol.20 (3), p.824-836
issn 1051-2004
1095-4333
language eng
recordid cdi_proquest_miscellaneous_746229487
source Elsevier ScienceDirect Journals
subjects Breast cancer
Breast sonography
Computer-aided diagnosis (CAD)
Feature selection
Fuzzy support vector machine (FSVM)
Mass classification
Ultrasound (US) images
title Detection and classification of masses in breast ultrasound images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T06%3A12%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20and%20classification%20of%20masses%20in%20breast%20ultrasound%20images&rft.jtitle=Digital%20signal%20processing&rft.au=Shi,%20Xiangjun&rft.date=2010-05-01&rft.volume=20&rft.issue=3&rft.spage=824&rft.epage=836&rft.pages=824-836&rft.issn=1051-2004&rft.eissn=1095-4333&rft_id=info:doi/10.1016/j.dsp.2009.10.010&rft_dat=%3Cproquest_cross%3E746229487%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=746229487&rft_id=info:pmid/&rft_els_id=S1051200409001882&rfr_iscdi=true