Comparative Evaluation of Different Post Processing Methods for Numerical Prediction of Temperature Forecasts over Iran

In this study we examined the performance of five post-processing methods on WRF model outputs for daily maximum and minimum temperature forecasts in thirty synoptic meteorological stations over Iran. Direct Model Output (DMO) always contains systematic errors which arise mainly from the simplificat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Research journal of environmental sciences 2010-03, Vol.4 (3), p.305-316
Hauptverfasser: Vashani, S., Azadi, M., Hajjam, S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 316
container_issue 3
container_start_page 305
container_title Research journal of environmental sciences
container_volume 4
creator Vashani, S.
Azadi, M.
Hajjam, S.
description In this study we examined the performance of five post-processing methods on WRF model outputs for daily maximum and minimum temperature forecasts in thirty synoptic meteorological stations over Iran. Direct Model Output (DMO) always contains systematic errors which arise mainly from the simplification of the earth topography in the model and deficiencies in the physics of the model. Different methods for post-processing of these outputs are given to remove the systematic errors. The results of the experiments show all methods are successful in removing the systematic errors in the model outputs. Comparing calculated statistical scores like root mean square error, mean absolute error and mean error indicate that Kalman Filtering (KF) and Artificial Neural Network (ANN) methods are better compared to other methods. Due to the importance of specific temperature thresholds in application, we verified the post-processed temperature forecasts for some specific temperature thresholds. The results of some statistical measure such as Proportion Correct (PC), Treat Score (TS) and False Alarm Rate (FAR) showed satisfactory for various thresholds, but better results have been obtained for higher values of maximum temperature and lowest values of minimum temperature.
doi_str_mv 10.3923/rjes.2010.305.316
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746200791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>746200791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1656-e6b8ee1a9b095eed3439d84047efbc9d21481415be9fa2c0fc67459634354e723</originalsourceid><addsrcrecordid>eNo1kD1PwzAQhj2ARCn8ADZvTC127Hx4RKWFSuVjKLPlOGdIlcThnBTx73FUWO7ulZ57h4eQG86WQiXiDg8QlgmbIkuXgmdnZMYLrhZC8uSCXIZwYCwtVFHMyPfKt71BM9RHoOujacZ4-o56Rx9q5wChG-ibD3GgtxBC3X3QZxg-fRWo80hfxhawtqaJAFS1_f_eQ9tD7B0R6MYjWBOGQP0RkG7RdFfk3JkmwPXfnpP3zXq_elrsXh-3q_vdwvIszRaQlQUAN6pkKgWohBSqKiSTObjSqirhsuCSpyUoZxLLnM1ymaoscqmEPBFzcnvq7dF_jRAG3dbBQtOYDvwYdC6zhLFc8UjyE2nRh4DgdI91a_BHc6Ynr3ryqievOnrV0av4BRqWcGs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746200791</pqid></control><display><type>article</type><title>Comparative Evaluation of Different Post Processing Methods for Numerical Prediction of Temperature Forecasts over Iran</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><source>Science Alert</source><creator>Vashani, S. ; Azadi, M. ; Hajjam, S.</creator><creatorcontrib>Vashani, S. ; Azadi, M. ; Hajjam, S.</creatorcontrib><description>In this study we examined the performance of five post-processing methods on WRF model outputs for daily maximum and minimum temperature forecasts in thirty synoptic meteorological stations over Iran. Direct Model Output (DMO) always contains systematic errors which arise mainly from the simplification of the earth topography in the model and deficiencies in the physics of the model. Different methods for post-processing of these outputs are given to remove the systematic errors. The results of the experiments show all methods are successful in removing the systematic errors in the model outputs. Comparing calculated statistical scores like root mean square error, mean absolute error and mean error indicate that Kalman Filtering (KF) and Artificial Neural Network (ANN) methods are better compared to other methods. Due to the importance of specific temperature thresholds in application, we verified the post-processed temperature forecasts for some specific temperature thresholds. The results of some statistical measure such as Proportion Correct (PC), Treat Score (TS) and False Alarm Rate (FAR) showed satisfactory for various thresholds, but better results have been obtained for higher values of maximum temperature and lowest values of minimum temperature.</description><identifier>ISSN: 1819-3412</identifier><identifier>DOI: 10.3923/rjes.2010.305.316</identifier><language>eng</language><ispartof>Research journal of environmental sciences, 2010-03, Vol.4 (3), p.305-316</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1656-e6b8ee1a9b095eed3439d84047efbc9d21481415be9fa2c0fc67459634354e723</citedby><cites>FETCH-LOGICAL-c1656-e6b8ee1a9b095eed3439d84047efbc9d21481415be9fa2c0fc67459634354e723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4124,27924,27925</link.rule.ids></links><search><creatorcontrib>Vashani, S.</creatorcontrib><creatorcontrib>Azadi, M.</creatorcontrib><creatorcontrib>Hajjam, S.</creatorcontrib><title>Comparative Evaluation of Different Post Processing Methods for Numerical Prediction of Temperature Forecasts over Iran</title><title>Research journal of environmental sciences</title><description>In this study we examined the performance of five post-processing methods on WRF model outputs for daily maximum and minimum temperature forecasts in thirty synoptic meteorological stations over Iran. Direct Model Output (DMO) always contains systematic errors which arise mainly from the simplification of the earth topography in the model and deficiencies in the physics of the model. Different methods for post-processing of these outputs are given to remove the systematic errors. The results of the experiments show all methods are successful in removing the systematic errors in the model outputs. Comparing calculated statistical scores like root mean square error, mean absolute error and mean error indicate that Kalman Filtering (KF) and Artificial Neural Network (ANN) methods are better compared to other methods. Due to the importance of specific temperature thresholds in application, we verified the post-processed temperature forecasts for some specific temperature thresholds. The results of some statistical measure such as Proportion Correct (PC), Treat Score (TS) and False Alarm Rate (FAR) showed satisfactory for various thresholds, but better results have been obtained for higher values of maximum temperature and lowest values of minimum temperature.</description><issn>1819-3412</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo1kD1PwzAQhj2ARCn8ADZvTC127Hx4RKWFSuVjKLPlOGdIlcThnBTx73FUWO7ulZ57h4eQG86WQiXiDg8QlgmbIkuXgmdnZMYLrhZC8uSCXIZwYCwtVFHMyPfKt71BM9RHoOujacZ4-o56Rx9q5wChG-ibD3GgtxBC3X3QZxg-fRWo80hfxhawtqaJAFS1_f_eQ9tD7B0R6MYjWBOGQP0RkG7RdFfk3JkmwPXfnpP3zXq_elrsXh-3q_vdwvIszRaQlQUAN6pkKgWohBSqKiSTObjSqirhsuCSpyUoZxLLnM1ymaoscqmEPBFzcnvq7dF_jRAG3dbBQtOYDvwYdC6zhLFc8UjyE2nRh4DgdI91a_BHc6Ynr3ryqievOnrV0av4BRqWcGs</recordid><startdate>20100315</startdate><enddate>20100315</enddate><creator>Vashani, S.</creator><creator>Azadi, M.</creator><creator>Hajjam, S.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20100315</creationdate><title>Comparative Evaluation of Different Post Processing Methods for Numerical Prediction of Temperature Forecasts over Iran</title><author>Vashani, S. ; Azadi, M. ; Hajjam, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1656-e6b8ee1a9b095eed3439d84047efbc9d21481415be9fa2c0fc67459634354e723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Vashani, S.</creatorcontrib><creatorcontrib>Azadi, M.</creatorcontrib><creatorcontrib>Hajjam, S.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Research journal of environmental sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vashani, S.</au><au>Azadi, M.</au><au>Hajjam, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Evaluation of Different Post Processing Methods for Numerical Prediction of Temperature Forecasts over Iran</atitle><jtitle>Research journal of environmental sciences</jtitle><date>2010-03-15</date><risdate>2010</risdate><volume>4</volume><issue>3</issue><spage>305</spage><epage>316</epage><pages>305-316</pages><issn>1819-3412</issn><abstract>In this study we examined the performance of five post-processing methods on WRF model outputs for daily maximum and minimum temperature forecasts in thirty synoptic meteorological stations over Iran. Direct Model Output (DMO) always contains systematic errors which arise mainly from the simplification of the earth topography in the model and deficiencies in the physics of the model. Different methods for post-processing of these outputs are given to remove the systematic errors. The results of the experiments show all methods are successful in removing the systematic errors in the model outputs. Comparing calculated statistical scores like root mean square error, mean absolute error and mean error indicate that Kalman Filtering (KF) and Artificial Neural Network (ANN) methods are better compared to other methods. Due to the importance of specific temperature thresholds in application, we verified the post-processed temperature forecasts for some specific temperature thresholds. The results of some statistical measure such as Proportion Correct (PC), Treat Score (TS) and False Alarm Rate (FAR) showed satisfactory for various thresholds, but better results have been obtained for higher values of maximum temperature and lowest values of minimum temperature.</abstract><doi>10.3923/rjes.2010.305.316</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1819-3412
ispartof Research journal of environmental sciences, 2010-03, Vol.4 (3), p.305-316
issn 1819-3412
language eng
recordid cdi_proquest_miscellaneous_746200791
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry; Science Alert
title Comparative Evaluation of Different Post Processing Methods for Numerical Prediction of Temperature Forecasts over Iran
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A32%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Evaluation%20of%20Different%20Post%20Processing%20Methods%20for%20Numerical%20Prediction%20of%20Temperature%20Forecasts%20over%20Iran&rft.jtitle=Research%20journal%20of%20environmental%20sciences&rft.au=Vashani,%20S.&rft.date=2010-03-15&rft.volume=4&rft.issue=3&rft.spage=305&rft.epage=316&rft.pages=305-316&rft.issn=1819-3412&rft_id=info:doi/10.3923/rjes.2010.305.316&rft_dat=%3Cproquest_cross%3E746200791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=746200791&rft_id=info:pmid/&rfr_iscdi=true