Synthesis of isomaltooligosaccharides and oligodextrans in a recycle membrane bioreactor by the combined use of dextransucrase and dextranase
A recycle ultrafiltration membrane reactor was used to develop a continuous synthesis process for the production of isomaltooligosaccharides (IMO) from sucrose, using the enzymes dextransucrase and dextranase. A variety of membranes were tested and the parameters affecting reactor stability, product...
Gespeichert in:
Veröffentlicht in: | Biotechnology and bioengineering 2004-12, Vol.88 (6), p.778-787 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 787 |
---|---|
container_issue | 6 |
container_start_page | 778 |
container_title | Biotechnology and bioengineering |
container_volume | 88 |
creator | Goulas, Athanasios K. Cooper, Julian M. Grandison, Alistair S. Rastall, Robert A. |
description | A recycle ultrafiltration membrane reactor was used to develop a continuous synthesis process for the production of isomaltooligosaccharides (IMO) from sucrose, using the enzymes dextransucrase and dextranase. A variety of membranes were tested and the parameters affecting reactor stability, productivity, and product molecular weight distribution were investigated. Enzyme inactivation in the reactor was reduced with the use of a non‐ionic surfactant but its use had severe adverse effects on the membrane pore size and porosity. During continuous isomaltooligosaccharide synthesis, dextransucrase inactivation was shown to occur as a result of the dextranase activity and it was dependent mainly on the substrate availability in the reactor and the hydrolytic activity of dextranase. Substrate and dextranase concentrations (50–200 mg/mL−1 and 10–30 U/mL−1, respectively) affected permeate fluxes, reactor productivity, and product average molecular weight. The oligodextrans and isomaltooligosaccharides formed had molecular weights lower than in batch synthesis reactions but they largely consisted of oligosaccharides with a degree of polymerization (DP) greater than 5, depending on the synthesis conditions. No significant rejection of the sugars formed was shown by the membranes and permeate flux was dependent on tangential flow velocity. © 2004 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/bit.20257 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746199049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>777691751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4507-406eae337734b6b0e6c581d3b094fd5a5ca0da7395693c6c903acfc2d33e046c3</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhSMEotvCgT-ALCRAHNKO7dheH6EqpagtqBQ4Wo4zoS5JXOxEdH8E_xlvN6USEpysefrmjZ5fUTyhsEsB2F7tx10GTKh7xYKCViUwDfeLBQDIkgvNtortlC7zqJZSPiy2qBCcgWSL4ten1TBeYPKJhJb4FHrbjSF0_ltI1rkLG32DidihITdig9djtEMifiCWRHQr1yHpsa-ziqT2IaJ1Y4ikXpFsTFzoaz9gQ6aE6xO3BpOLNitr41nK46PiQWu7hI_nd6f4_PbgfP9defzh8Gj_9XHpKgGqrECiRc6V4lUta0DpxJI2vAZdtY2wwllorOJaSM2ddBq4da1jDecIlXR8p3i58b2K4ceEaTS9Tw67LmcIUzKqklRrqHQmX_yXlIoCXSqWwWd_gZdhikNOYRjlSrJqWWXo1QZyMaQUsTVX0fc2rgwFs67S5CrNTZWZfTobTnWPzR05d5eB5zNgk7Ndm7_Q-XTHSQ6MKpq5vQ3303e4-vdF8-bo_PZ0udnwacTrPxs2fs95uRLm6-mh-XL6_gxOTs7MR_4bmYHGhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213762484</pqid></control><display><type>article</type><title>Synthesis of isomaltooligosaccharides and oligodextrans in a recycle membrane bioreactor by the combined use of dextransucrase and dextranase</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Goulas, Athanasios K. ; Cooper, Julian M. ; Grandison, Alistair S. ; Rastall, Robert A.</creator><creatorcontrib>Goulas, Athanasios K. ; Cooper, Julian M. ; Grandison, Alistair S. ; Rastall, Robert A.</creatorcontrib><description>A recycle ultrafiltration membrane reactor was used to develop a continuous synthesis process for the production of isomaltooligosaccharides (IMO) from sucrose, using the enzymes dextransucrase and dextranase. A variety of membranes were tested and the parameters affecting reactor stability, productivity, and product molecular weight distribution were investigated. Enzyme inactivation in the reactor was reduced with the use of a non‐ionic surfactant but its use had severe adverse effects on the membrane pore size and porosity. During continuous isomaltooligosaccharide synthesis, dextransucrase inactivation was shown to occur as a result of the dextranase activity and it was dependent mainly on the substrate availability in the reactor and the hydrolytic activity of dextranase. Substrate and dextranase concentrations (50–200 mg/mL−1 and 10–30 U/mL−1, respectively) affected permeate fluxes, reactor productivity, and product average molecular weight. The oligodextrans and isomaltooligosaccharides formed had molecular weights lower than in batch synthesis reactions but they largely consisted of oligosaccharides with a degree of polymerization (DP) greater than 5, depending on the synthesis conditions. No significant rejection of the sugars formed was shown by the membranes and permeate flux was dependent on tangential flow velocity. © 2004 Wiley Periodicals, Inc.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.20257</identifier><identifier>PMID: 15532062</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Biological and medical sciences ; Bioreactors ; Biotechnology ; Dextranase ; Dextranase - chemistry ; Dextrans - chemical synthesis ; Dextransucrase ; endodextranase ; Enzyme Activation ; Enzyme Stability ; Enzymes ; Enzymes, Immobilized - chemistry ; Equipment Design ; Equipment Failure Analysis ; Equipment Reuse ; Fundamental and applied biological sciences. Psychology ; Glucosyltransferases - chemical synthesis ; isomaltooligosaccharides ; Membrane reactors ; Membranes, Artificial ; oligosaccharides ; Oligosaccharides - chemical synthesis ; Polymerization ; Porosity ; prebiotics ; Q1 ; recycle membrane reactor ; Sucrose ; Sucrose - chemistry ; Sugar ; Surfactants ; Ultrafiltration ; Ultrafiltration - instrumentation ; Ultrafiltration - methods ; Velocity</subject><ispartof>Biotechnology and bioengineering, 2004-12, Vol.88 (6), p.778-787</ispartof><rights>Copyright © 2004 Wiley Periodicals, Inc.</rights><rights>2005 INIST-CNRS</rights><rights>Copyright John Wiley and Sons, Limited Dec 20, 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4507-406eae337734b6b0e6c581d3b094fd5a5ca0da7395693c6c903acfc2d33e046c3</citedby><cites>FETCH-LOGICAL-c4507-406eae337734b6b0e6c581d3b094fd5a5ca0da7395693c6c903acfc2d33e046c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.20257$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.20257$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16302171$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15532062$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goulas, Athanasios K.</creatorcontrib><creatorcontrib>Cooper, Julian M.</creatorcontrib><creatorcontrib>Grandison, Alistair S.</creatorcontrib><creatorcontrib>Rastall, Robert A.</creatorcontrib><title>Synthesis of isomaltooligosaccharides and oligodextrans in a recycle membrane bioreactor by the combined use of dextransucrase and dextranase</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>A recycle ultrafiltration membrane reactor was used to develop a continuous synthesis process for the production of isomaltooligosaccharides (IMO) from sucrose, using the enzymes dextransucrase and dextranase. A variety of membranes were tested and the parameters affecting reactor stability, productivity, and product molecular weight distribution were investigated. Enzyme inactivation in the reactor was reduced with the use of a non‐ionic surfactant but its use had severe adverse effects on the membrane pore size and porosity. During continuous isomaltooligosaccharide synthesis, dextransucrase inactivation was shown to occur as a result of the dextranase activity and it was dependent mainly on the substrate availability in the reactor and the hydrolytic activity of dextranase. Substrate and dextranase concentrations (50–200 mg/mL−1 and 10–30 U/mL−1, respectively) affected permeate fluxes, reactor productivity, and product average molecular weight. The oligodextrans and isomaltooligosaccharides formed had molecular weights lower than in batch synthesis reactions but they largely consisted of oligosaccharides with a degree of polymerization (DP) greater than 5, depending on the synthesis conditions. No significant rejection of the sugars formed was shown by the membranes and permeate flux was dependent on tangential flow velocity. © 2004 Wiley Periodicals, Inc.</description><subject>Biological and medical sciences</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Dextranase</subject><subject>Dextranase - chemistry</subject><subject>Dextrans - chemical synthesis</subject><subject>Dextransucrase</subject><subject>endodextranase</subject><subject>Enzyme Activation</subject><subject>Enzyme Stability</subject><subject>Enzymes</subject><subject>Enzymes, Immobilized - chemistry</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Equipment Reuse</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glucosyltransferases - chemical synthesis</subject><subject>isomaltooligosaccharides</subject><subject>Membrane reactors</subject><subject>Membranes, Artificial</subject><subject>oligosaccharides</subject><subject>Oligosaccharides - chemical synthesis</subject><subject>Polymerization</subject><subject>Porosity</subject><subject>prebiotics</subject><subject>Q1</subject><subject>recycle membrane reactor</subject><subject>Sucrose</subject><subject>Sucrose - chemistry</subject><subject>Sugar</subject><subject>Surfactants</subject><subject>Ultrafiltration</subject><subject>Ultrafiltration - instrumentation</subject><subject>Ultrafiltration - methods</subject><subject>Velocity</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFv1DAQhSMEotvCgT-ALCRAHNKO7dheH6EqpagtqBQ4Wo4zoS5JXOxEdH8E_xlvN6USEpysefrmjZ5fUTyhsEsB2F7tx10GTKh7xYKCViUwDfeLBQDIkgvNtortlC7zqJZSPiy2qBCcgWSL4ten1TBeYPKJhJb4FHrbjSF0_ltI1rkLG32DidihITdig9djtEMifiCWRHQr1yHpsa-ziqT2IaJ1Y4ikXpFsTFzoaz9gQ6aE6xO3BpOLNitr41nK46PiQWu7hI_nd6f4_PbgfP9defzh8Gj_9XHpKgGqrECiRc6V4lUta0DpxJI2vAZdtY2wwllorOJaSM2ddBq4da1jDecIlXR8p3i58b2K4ceEaTS9Tw67LmcIUzKqklRrqHQmX_yXlIoCXSqWwWd_gZdhikNOYRjlSrJqWWXo1QZyMaQUsTVX0fc2rgwFs67S5CrNTZWZfTobTnWPzR05d5eB5zNgk7Ndm7_Q-XTHSQ6MKpq5vQ3303e4-vdF8-bo_PZ0udnwacTrPxs2fs95uRLm6-mh-XL6_gxOTs7MR_4bmYHGhw</recordid><startdate>20041220</startdate><enddate>20041220</enddate><creator>Goulas, Athanasios K.</creator><creator>Cooper, Julian M.</creator><creator>Grandison, Alistair S.</creator><creator>Rastall, Robert A.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20041220</creationdate><title>Synthesis of isomaltooligosaccharides and oligodextrans in a recycle membrane bioreactor by the combined use of dextransucrase and dextranase</title><author>Goulas, Athanasios K. ; Cooper, Julian M. ; Grandison, Alistair S. ; Rastall, Robert A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4507-406eae337734b6b0e6c581d3b094fd5a5ca0da7395693c6c903acfc2d33e046c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Biological and medical sciences</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Dextranase</topic><topic>Dextranase - chemistry</topic><topic>Dextrans - chemical synthesis</topic><topic>Dextransucrase</topic><topic>endodextranase</topic><topic>Enzyme Activation</topic><topic>Enzyme Stability</topic><topic>Enzymes</topic><topic>Enzymes, Immobilized - chemistry</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Equipment Reuse</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glucosyltransferases - chemical synthesis</topic><topic>isomaltooligosaccharides</topic><topic>Membrane reactors</topic><topic>Membranes, Artificial</topic><topic>oligosaccharides</topic><topic>Oligosaccharides - chemical synthesis</topic><topic>Polymerization</topic><topic>Porosity</topic><topic>prebiotics</topic><topic>Q1</topic><topic>recycle membrane reactor</topic><topic>Sucrose</topic><topic>Sucrose - chemistry</topic><topic>Sugar</topic><topic>Surfactants</topic><topic>Ultrafiltration</topic><topic>Ultrafiltration - instrumentation</topic><topic>Ultrafiltration - methods</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goulas, Athanasios K.</creatorcontrib><creatorcontrib>Cooper, Julian M.</creatorcontrib><creatorcontrib>Grandison, Alistair S.</creatorcontrib><creatorcontrib>Rastall, Robert A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goulas, Athanasios K.</au><au>Cooper, Julian M.</au><au>Grandison, Alistair S.</au><au>Rastall, Robert A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of isomaltooligosaccharides and oligodextrans in a recycle membrane bioreactor by the combined use of dextransucrase and dextranase</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2004-12-20</date><risdate>2004</risdate><volume>88</volume><issue>6</issue><spage>778</spage><epage>787</epage><pages>778-787</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>A recycle ultrafiltration membrane reactor was used to develop a continuous synthesis process for the production of isomaltooligosaccharides (IMO) from sucrose, using the enzymes dextransucrase and dextranase. A variety of membranes were tested and the parameters affecting reactor stability, productivity, and product molecular weight distribution were investigated. Enzyme inactivation in the reactor was reduced with the use of a non‐ionic surfactant but its use had severe adverse effects on the membrane pore size and porosity. During continuous isomaltooligosaccharide synthesis, dextransucrase inactivation was shown to occur as a result of the dextranase activity and it was dependent mainly on the substrate availability in the reactor and the hydrolytic activity of dextranase. Substrate and dextranase concentrations (50–200 mg/mL−1 and 10–30 U/mL−1, respectively) affected permeate fluxes, reactor productivity, and product average molecular weight. The oligodextrans and isomaltooligosaccharides formed had molecular weights lower than in batch synthesis reactions but they largely consisted of oligosaccharides with a degree of polymerization (DP) greater than 5, depending on the synthesis conditions. No significant rejection of the sugars formed was shown by the membranes and permeate flux was dependent on tangential flow velocity. © 2004 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15532062</pmid><doi>10.1002/bit.20257</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 2004-12, Vol.88 (6), p.778-787 |
issn | 0006-3592 1097-0290 |
language | eng |
recordid | cdi_proquest_miscellaneous_746199049 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Biological and medical sciences Bioreactors Biotechnology Dextranase Dextranase - chemistry Dextrans - chemical synthesis Dextransucrase endodextranase Enzyme Activation Enzyme Stability Enzymes Enzymes, Immobilized - chemistry Equipment Design Equipment Failure Analysis Equipment Reuse Fundamental and applied biological sciences. Psychology Glucosyltransferases - chemical synthesis isomaltooligosaccharides Membrane reactors Membranes, Artificial oligosaccharides Oligosaccharides - chemical synthesis Polymerization Porosity prebiotics Q1 recycle membrane reactor Sucrose Sucrose - chemistry Sugar Surfactants Ultrafiltration Ultrafiltration - instrumentation Ultrafiltration - methods Velocity |
title | Synthesis of isomaltooligosaccharides and oligodextrans in a recycle membrane bioreactor by the combined use of dextransucrase and dextranase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A57%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20isomaltooligosaccharides%20and%20oligodextrans%20in%20a%20recycle%20membrane%20bioreactor%20by%20the%20combined%20use%20of%20dextransucrase%20and%20dextranase&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Goulas,%20Athanasios%20K.&rft.date=2004-12-20&rft.volume=88&rft.issue=6&rft.spage=778&rft.epage=787&rft.pages=778-787&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.20257&rft_dat=%3Cproquest_cross%3E777691751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213762484&rft_id=info:pmid/15532062&rfr_iscdi=true |