Synthesis of isomaltooligosaccharides and oligodextrans in a recycle membrane bioreactor by the combined use of dextransucrase and dextranase

A recycle ultrafiltration membrane reactor was used to develop a continuous synthesis process for the production of isomaltooligosaccharides (IMO) from sucrose, using the enzymes dextransucrase and dextranase. A variety of membranes were tested and the parameters affecting reactor stability, product...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2004-12, Vol.88 (6), p.778-787
Hauptverfasser: Goulas, Athanasios K., Cooper, Julian M., Grandison, Alistair S., Rastall, Robert A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 787
container_issue 6
container_start_page 778
container_title Biotechnology and bioengineering
container_volume 88
creator Goulas, Athanasios K.
Cooper, Julian M.
Grandison, Alistair S.
Rastall, Robert A.
description A recycle ultrafiltration membrane reactor was used to develop a continuous synthesis process for the production of isomaltooligosaccharides (IMO) from sucrose, using the enzymes dextransucrase and dextranase. A variety of membranes were tested and the parameters affecting reactor stability, productivity, and product molecular weight distribution were investigated. Enzyme inactivation in the reactor was reduced with the use of a non‐ionic surfactant but its use had severe adverse effects on the membrane pore size and porosity. During continuous isomaltooligosaccharide synthesis, dextransucrase inactivation was shown to occur as a result of the dextranase activity and it was dependent mainly on the substrate availability in the reactor and the hydrolytic activity of dextranase. Substrate and dextranase concentrations (50–200 mg/mL−1 and 10–30 U/mL−1, respectively) affected permeate fluxes, reactor productivity, and product average molecular weight. The oligodextrans and isomaltooligosaccharides formed had molecular weights lower than in batch synthesis reactions but they largely consisted of oligosaccharides with a degree of polymerization (DP) greater than 5, depending on the synthesis conditions. No significant rejection of the sugars formed was shown by the membranes and permeate flux was dependent on tangential flow velocity. © 2004 Wiley Periodicals, Inc.
doi_str_mv 10.1002/bit.20257
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746199049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>777691751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4507-406eae337734b6b0e6c581d3b094fd5a5ca0da7395693c6c903acfc2d33e046c3</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhSMEotvCgT-ALCRAHNKO7dheH6EqpagtqBQ4Wo4zoS5JXOxEdH8E_xlvN6USEpysefrmjZ5fUTyhsEsB2F7tx10GTKh7xYKCViUwDfeLBQDIkgvNtortlC7zqJZSPiy2qBCcgWSL4ten1TBeYPKJhJb4FHrbjSF0_ltI1rkLG32DidihITdig9djtEMifiCWRHQr1yHpsa-ziqT2IaJ1Y4ikXpFsTFzoaz9gQ6aE6xO3BpOLNitr41nK46PiQWu7hI_nd6f4_PbgfP9defzh8Gj_9XHpKgGqrECiRc6V4lUta0DpxJI2vAZdtY2wwllorOJaSM2ddBq4da1jDecIlXR8p3i58b2K4ceEaTS9Tw67LmcIUzKqklRrqHQmX_yXlIoCXSqWwWd_gZdhikNOYRjlSrJqWWXo1QZyMaQUsTVX0fc2rgwFs67S5CrNTZWZfTobTnWPzR05d5eB5zNgk7Ndm7_Q-XTHSQ6MKpq5vQ3303e4-vdF8-bo_PZ0udnwacTrPxs2fs95uRLm6-mh-XL6_gxOTs7MR_4bmYHGhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213762484</pqid></control><display><type>article</type><title>Synthesis of isomaltooligosaccharides and oligodextrans in a recycle membrane bioreactor by the combined use of dextransucrase and dextranase</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Goulas, Athanasios K. ; Cooper, Julian M. ; Grandison, Alistair S. ; Rastall, Robert A.</creator><creatorcontrib>Goulas, Athanasios K. ; Cooper, Julian M. ; Grandison, Alistair S. ; Rastall, Robert A.</creatorcontrib><description>A recycle ultrafiltration membrane reactor was used to develop a continuous synthesis process for the production of isomaltooligosaccharides (IMO) from sucrose, using the enzymes dextransucrase and dextranase. A variety of membranes were tested and the parameters affecting reactor stability, productivity, and product molecular weight distribution were investigated. Enzyme inactivation in the reactor was reduced with the use of a non‐ionic surfactant but its use had severe adverse effects on the membrane pore size and porosity. During continuous isomaltooligosaccharide synthesis, dextransucrase inactivation was shown to occur as a result of the dextranase activity and it was dependent mainly on the substrate availability in the reactor and the hydrolytic activity of dextranase. Substrate and dextranase concentrations (50–200 mg/mL−1 and 10–30 U/mL−1, respectively) affected permeate fluxes, reactor productivity, and product average molecular weight. The oligodextrans and isomaltooligosaccharides formed had molecular weights lower than in batch synthesis reactions but they largely consisted of oligosaccharides with a degree of polymerization (DP) greater than 5, depending on the synthesis conditions. No significant rejection of the sugars formed was shown by the membranes and permeate flux was dependent on tangential flow velocity. © 2004 Wiley Periodicals, Inc.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.20257</identifier><identifier>PMID: 15532062</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Biological and medical sciences ; Bioreactors ; Biotechnology ; Dextranase ; Dextranase - chemistry ; Dextrans - chemical synthesis ; Dextransucrase ; endodextranase ; Enzyme Activation ; Enzyme Stability ; Enzymes ; Enzymes, Immobilized - chemistry ; Equipment Design ; Equipment Failure Analysis ; Equipment Reuse ; Fundamental and applied biological sciences. Psychology ; Glucosyltransferases - chemical synthesis ; isomaltooligosaccharides ; Membrane reactors ; Membranes, Artificial ; oligosaccharides ; Oligosaccharides - chemical synthesis ; Polymerization ; Porosity ; prebiotics ; Q1 ; recycle membrane reactor ; Sucrose ; Sucrose - chemistry ; Sugar ; Surfactants ; Ultrafiltration ; Ultrafiltration - instrumentation ; Ultrafiltration - methods ; Velocity</subject><ispartof>Biotechnology and bioengineering, 2004-12, Vol.88 (6), p.778-787</ispartof><rights>Copyright © 2004 Wiley Periodicals, Inc.</rights><rights>2005 INIST-CNRS</rights><rights>Copyright John Wiley and Sons, Limited Dec 20, 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4507-406eae337734b6b0e6c581d3b094fd5a5ca0da7395693c6c903acfc2d33e046c3</citedby><cites>FETCH-LOGICAL-c4507-406eae337734b6b0e6c581d3b094fd5a5ca0da7395693c6c903acfc2d33e046c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.20257$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.20257$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16302171$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15532062$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goulas, Athanasios K.</creatorcontrib><creatorcontrib>Cooper, Julian M.</creatorcontrib><creatorcontrib>Grandison, Alistair S.</creatorcontrib><creatorcontrib>Rastall, Robert A.</creatorcontrib><title>Synthesis of isomaltooligosaccharides and oligodextrans in a recycle membrane bioreactor by the combined use of dextransucrase and dextranase</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>A recycle ultrafiltration membrane reactor was used to develop a continuous synthesis process for the production of isomaltooligosaccharides (IMO) from sucrose, using the enzymes dextransucrase and dextranase. A variety of membranes were tested and the parameters affecting reactor stability, productivity, and product molecular weight distribution were investigated. Enzyme inactivation in the reactor was reduced with the use of a non‐ionic surfactant but its use had severe adverse effects on the membrane pore size and porosity. During continuous isomaltooligosaccharide synthesis, dextransucrase inactivation was shown to occur as a result of the dextranase activity and it was dependent mainly on the substrate availability in the reactor and the hydrolytic activity of dextranase. Substrate and dextranase concentrations (50–200 mg/mL−1 and 10–30 U/mL−1, respectively) affected permeate fluxes, reactor productivity, and product average molecular weight. The oligodextrans and isomaltooligosaccharides formed had molecular weights lower than in batch synthesis reactions but they largely consisted of oligosaccharides with a degree of polymerization (DP) greater than 5, depending on the synthesis conditions. No significant rejection of the sugars formed was shown by the membranes and permeate flux was dependent on tangential flow velocity. © 2004 Wiley Periodicals, Inc.</description><subject>Biological and medical sciences</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Dextranase</subject><subject>Dextranase - chemistry</subject><subject>Dextrans - chemical synthesis</subject><subject>Dextransucrase</subject><subject>endodextranase</subject><subject>Enzyme Activation</subject><subject>Enzyme Stability</subject><subject>Enzymes</subject><subject>Enzymes, Immobilized - chemistry</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Equipment Reuse</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glucosyltransferases - chemical synthesis</subject><subject>isomaltooligosaccharides</subject><subject>Membrane reactors</subject><subject>Membranes, Artificial</subject><subject>oligosaccharides</subject><subject>Oligosaccharides - chemical synthesis</subject><subject>Polymerization</subject><subject>Porosity</subject><subject>prebiotics</subject><subject>Q1</subject><subject>recycle membrane reactor</subject><subject>Sucrose</subject><subject>Sucrose - chemistry</subject><subject>Sugar</subject><subject>Surfactants</subject><subject>Ultrafiltration</subject><subject>Ultrafiltration - instrumentation</subject><subject>Ultrafiltration - methods</subject><subject>Velocity</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFv1DAQhSMEotvCgT-ALCRAHNKO7dheH6EqpagtqBQ4Wo4zoS5JXOxEdH8E_xlvN6USEpysefrmjZ5fUTyhsEsB2F7tx10GTKh7xYKCViUwDfeLBQDIkgvNtortlC7zqJZSPiy2qBCcgWSL4ten1TBeYPKJhJb4FHrbjSF0_ltI1rkLG32DidihITdig9djtEMifiCWRHQr1yHpsa-ziqT2IaJ1Y4ikXpFsTFzoaz9gQ6aE6xO3BpOLNitr41nK46PiQWu7hI_nd6f4_PbgfP9defzh8Gj_9XHpKgGqrECiRc6V4lUta0DpxJI2vAZdtY2wwllorOJaSM2ddBq4da1jDecIlXR8p3i58b2K4ceEaTS9Tw67LmcIUzKqklRrqHQmX_yXlIoCXSqWwWd_gZdhikNOYRjlSrJqWWXo1QZyMaQUsTVX0fc2rgwFs67S5CrNTZWZfTobTnWPzR05d5eB5zNgk7Ndm7_Q-XTHSQ6MKpq5vQ3303e4-vdF8-bo_PZ0udnwacTrPxs2fs95uRLm6-mh-XL6_gxOTs7MR_4bmYHGhw</recordid><startdate>20041220</startdate><enddate>20041220</enddate><creator>Goulas, Athanasios K.</creator><creator>Cooper, Julian M.</creator><creator>Grandison, Alistair S.</creator><creator>Rastall, Robert A.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20041220</creationdate><title>Synthesis of isomaltooligosaccharides and oligodextrans in a recycle membrane bioreactor by the combined use of dextransucrase and dextranase</title><author>Goulas, Athanasios K. ; Cooper, Julian M. ; Grandison, Alistair S. ; Rastall, Robert A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4507-406eae337734b6b0e6c581d3b094fd5a5ca0da7395693c6c903acfc2d33e046c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Biological and medical sciences</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Dextranase</topic><topic>Dextranase - chemistry</topic><topic>Dextrans - chemical synthesis</topic><topic>Dextransucrase</topic><topic>endodextranase</topic><topic>Enzyme Activation</topic><topic>Enzyme Stability</topic><topic>Enzymes</topic><topic>Enzymes, Immobilized - chemistry</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Equipment Reuse</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glucosyltransferases - chemical synthesis</topic><topic>isomaltooligosaccharides</topic><topic>Membrane reactors</topic><topic>Membranes, Artificial</topic><topic>oligosaccharides</topic><topic>Oligosaccharides - chemical synthesis</topic><topic>Polymerization</topic><topic>Porosity</topic><topic>prebiotics</topic><topic>Q1</topic><topic>recycle membrane reactor</topic><topic>Sucrose</topic><topic>Sucrose - chemistry</topic><topic>Sugar</topic><topic>Surfactants</topic><topic>Ultrafiltration</topic><topic>Ultrafiltration - instrumentation</topic><topic>Ultrafiltration - methods</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goulas, Athanasios K.</creatorcontrib><creatorcontrib>Cooper, Julian M.</creatorcontrib><creatorcontrib>Grandison, Alistair S.</creatorcontrib><creatorcontrib>Rastall, Robert A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goulas, Athanasios K.</au><au>Cooper, Julian M.</au><au>Grandison, Alistair S.</au><au>Rastall, Robert A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of isomaltooligosaccharides and oligodextrans in a recycle membrane bioreactor by the combined use of dextransucrase and dextranase</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2004-12-20</date><risdate>2004</risdate><volume>88</volume><issue>6</issue><spage>778</spage><epage>787</epage><pages>778-787</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>A recycle ultrafiltration membrane reactor was used to develop a continuous synthesis process for the production of isomaltooligosaccharides (IMO) from sucrose, using the enzymes dextransucrase and dextranase. A variety of membranes were tested and the parameters affecting reactor stability, productivity, and product molecular weight distribution were investigated. Enzyme inactivation in the reactor was reduced with the use of a non‐ionic surfactant but its use had severe adverse effects on the membrane pore size and porosity. During continuous isomaltooligosaccharide synthesis, dextransucrase inactivation was shown to occur as a result of the dextranase activity and it was dependent mainly on the substrate availability in the reactor and the hydrolytic activity of dextranase. Substrate and dextranase concentrations (50–200 mg/mL−1 and 10–30 U/mL−1, respectively) affected permeate fluxes, reactor productivity, and product average molecular weight. The oligodextrans and isomaltooligosaccharides formed had molecular weights lower than in batch synthesis reactions but they largely consisted of oligosaccharides with a degree of polymerization (DP) greater than 5, depending on the synthesis conditions. No significant rejection of the sugars formed was shown by the membranes and permeate flux was dependent on tangential flow velocity. © 2004 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15532062</pmid><doi>10.1002/bit.20257</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2004-12, Vol.88 (6), p.778-787
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_746199049
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Biological and medical sciences
Bioreactors
Biotechnology
Dextranase
Dextranase - chemistry
Dextrans - chemical synthesis
Dextransucrase
endodextranase
Enzyme Activation
Enzyme Stability
Enzymes
Enzymes, Immobilized - chemistry
Equipment Design
Equipment Failure Analysis
Equipment Reuse
Fundamental and applied biological sciences. Psychology
Glucosyltransferases - chemical synthesis
isomaltooligosaccharides
Membrane reactors
Membranes, Artificial
oligosaccharides
Oligosaccharides - chemical synthesis
Polymerization
Porosity
prebiotics
Q1
recycle membrane reactor
Sucrose
Sucrose - chemistry
Sugar
Surfactants
Ultrafiltration
Ultrafiltration - instrumentation
Ultrafiltration - methods
Velocity
title Synthesis of isomaltooligosaccharides and oligodextrans in a recycle membrane bioreactor by the combined use of dextransucrase and dextranase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A57%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20isomaltooligosaccharides%20and%20oligodextrans%20in%20a%20recycle%20membrane%20bioreactor%20by%20the%20combined%20use%20of%20dextransucrase%20and%20dextranase&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Goulas,%20Athanasios%20K.&rft.date=2004-12-20&rft.volume=88&rft.issue=6&rft.spage=778&rft.epage=787&rft.pages=778-787&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.20257&rft_dat=%3Cproquest_cross%3E777691751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213762484&rft_id=info:pmid/15532062&rfr_iscdi=true