Axisymmetric vibration of piezocomposite hollow circular cylinder

The axisymmetric vibration of a piezoelectric laminated hollow circular cylinder has been studied for an imperfect interface model. The frequency equation is derived for traction free inner and outer surfaces of the hollow cylinder with continuity conditions at the bonding interfaces. The composite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica 1996-01, Vol.116 (1-4), p.213-222
Hauptverfasser: PAUL, H. S, NELSON, V. K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 222
container_issue 1-4
container_start_page 213
container_title Acta mechanica
container_volume 116
creator PAUL, H. S
NELSON, V. K
description The axisymmetric vibration of a piezoelectric laminated hollow circular cylinder has been studied for an imperfect interface model. The frequency equation is derived for traction free inner and outer surfaces of the hollow cylinder with continuity conditions at the bonding interfaces. The composite cylinder is composed of two different piezoelectric materials belonging to 6 mm class and a hypothetical Linear Elastic Material with Voids (LEMV) as bonding layer. Numerical solutions of the frequency equation are obtained for the composite cylinder ceramic(1)/LEMV/ceramic(2). Computational results are presented as dispersion curves as well as in tables to characterize the attenuation of axial waves for three layered cylinders with and without voids in the thin LEMV layer.
doi_str_mv 10.1007/BF01171431
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746186533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>746186533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-5b9bbf03c5682c9df7a20a0ab134448bfe746f8c9aa5d83e128a9313e5d66dc33</originalsourceid><addsrcrecordid>eNpFkFFLwzAUhYMoOKcv_oI-CIJQzW3apHmcY1Nh4Is-l9s0wUja1KRV56-3Y0OfLge-83E5hFwCvQVKxd39mgIIyBkckRlwkCmXTByTGaUU0kIKekrOYnyfUiZymJHF4tvGbdvqIViVfNo64GB9l3iT9Fb_eOXb3kc76OTNO-e_EmWDGh2GRG2d7RodzsmJQRf1xeHOyet69bJ8TDfPD0_LxSZVjMGQFrWsa0OZKniZKdkYgRlFijWwPM_L2miRc1MqiVg0JdOQlSgZMF00nDeTY06u994--I9Rx6FqbVTaOey0H2M11aHkBduRN3tSBR9j0Kbqg20xbCug1W6m6n-mCb46aDEqdCZgp2z8a7Dpj2k79gvPn2dC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746186533</pqid></control><display><type>article</type><title>Axisymmetric vibration of piezocomposite hollow circular cylinder</title><source>SpringerLink Journals - AutoHoldings</source><creator>PAUL, H. S ; NELSON, V. K</creator><creatorcontrib>PAUL, H. S ; NELSON, V. K</creatorcontrib><description>The axisymmetric vibration of a piezoelectric laminated hollow circular cylinder has been studied for an imperfect interface model. The frequency equation is derived for traction free inner and outer surfaces of the hollow cylinder with continuity conditions at the bonding interfaces. The composite cylinder is composed of two different piezoelectric materials belonging to 6 mm class and a hypothetical Linear Elastic Material with Voids (LEMV) as bonding layer. Numerical solutions of the frequency equation are obtained for the composite cylinder ceramic(1)/LEMV/ceramic(2). Computational results are presented as dispersion curves as well as in tables to characterize the attenuation of axial waves for three layered cylinders with and without voids in the thin LEMV layer.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/BF01171431</identifier><identifier>CODEN: AMHCAP</identifier><language>eng</language><publisher>Wien: Springer</publisher><subject>Attenuation ; Bonding ; Cylinders (shapes) ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Interfaces (materials) ; Laminated composites ; Mathematical models ; Mechanical waves ; Numerical methods ; Physics ; Piezoelectric materials ; Solid mechanics ; Structural and continuum mechanics ; Structures (built objects) ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Vibrations and mechanical waves</subject><ispartof>Acta mechanica, 1996-01, Vol.116 (1-4), p.213-222</ispartof><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-5b9bbf03c5682c9df7a20a0ab134448bfe746f8c9aa5d83e128a9313e5d66dc33</citedby><cites>FETCH-LOGICAL-c331t-5b9bbf03c5682c9df7a20a0ab134448bfe746f8c9aa5d83e128a9313e5d66dc33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3128000$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>PAUL, H. S</creatorcontrib><creatorcontrib>NELSON, V. K</creatorcontrib><title>Axisymmetric vibration of piezocomposite hollow circular cylinder</title><title>Acta mechanica</title><description>The axisymmetric vibration of a piezoelectric laminated hollow circular cylinder has been studied for an imperfect interface model. The frequency equation is derived for traction free inner and outer surfaces of the hollow cylinder with continuity conditions at the bonding interfaces. The composite cylinder is composed of two different piezoelectric materials belonging to 6 mm class and a hypothetical Linear Elastic Material with Voids (LEMV) as bonding layer. Numerical solutions of the frequency equation are obtained for the composite cylinder ceramic(1)/LEMV/ceramic(2). Computational results are presented as dispersion curves as well as in tables to characterize the attenuation of axial waves for three layered cylinders with and without voids in the thin LEMV layer.</description><subject>Attenuation</subject><subject>Bonding</subject><subject>Cylinders (shapes)</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Interfaces (materials)</subject><subject>Laminated composites</subject><subject>Mathematical models</subject><subject>Mechanical waves</subject><subject>Numerical methods</subject><subject>Physics</subject><subject>Piezoelectric materials</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Structures (built objects)</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Vibrations and mechanical waves</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNpFkFFLwzAUhYMoOKcv_oI-CIJQzW3apHmcY1Nh4Is-l9s0wUja1KRV56-3Y0OfLge-83E5hFwCvQVKxd39mgIIyBkckRlwkCmXTByTGaUU0kIKekrOYnyfUiZymJHF4tvGbdvqIViVfNo64GB9l3iT9Fb_eOXb3kc76OTNO-e_EmWDGh2GRG2d7RodzsmJQRf1xeHOyet69bJ8TDfPD0_LxSZVjMGQFrWsa0OZKniZKdkYgRlFijWwPM_L2miRc1MqiVg0JdOQlSgZMF00nDeTY06u994--I9Rx6FqbVTaOey0H2M11aHkBduRN3tSBR9j0Kbqg20xbCug1W6m6n-mCb46aDEqdCZgp2z8a7Dpj2k79gvPn2dC</recordid><startdate>19960101</startdate><enddate>19960101</enddate><creator>PAUL, H. S</creator><creator>NELSON, V. K</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>19960101</creationdate><title>Axisymmetric vibration of piezocomposite hollow circular cylinder</title><author>PAUL, H. S ; NELSON, V. K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-5b9bbf03c5682c9df7a20a0ab134448bfe746f8c9aa5d83e128a9313e5d66dc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Attenuation</topic><topic>Bonding</topic><topic>Cylinders (shapes)</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Interfaces (materials)</topic><topic>Laminated composites</topic><topic>Mathematical models</topic><topic>Mechanical waves</topic><topic>Numerical methods</topic><topic>Physics</topic><topic>Piezoelectric materials</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Structures (built objects)</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Vibrations and mechanical waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PAUL, H. S</creatorcontrib><creatorcontrib>NELSON, V. K</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PAUL, H. S</au><au>NELSON, V. K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Axisymmetric vibration of piezocomposite hollow circular cylinder</atitle><jtitle>Acta mechanica</jtitle><date>1996-01-01</date><risdate>1996</risdate><volume>116</volume><issue>1-4</issue><spage>213</spage><epage>222</epage><pages>213-222</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><coden>AMHCAP</coden><abstract>The axisymmetric vibration of a piezoelectric laminated hollow circular cylinder has been studied for an imperfect interface model. The frequency equation is derived for traction free inner and outer surfaces of the hollow cylinder with continuity conditions at the bonding interfaces. The composite cylinder is composed of two different piezoelectric materials belonging to 6 mm class and a hypothetical Linear Elastic Material with Voids (LEMV) as bonding layer. Numerical solutions of the frequency equation are obtained for the composite cylinder ceramic(1)/LEMV/ceramic(2). Computational results are presented as dispersion curves as well as in tables to characterize the attenuation of axial waves for three layered cylinders with and without voids in the thin LEMV layer.</abstract><cop>Wien</cop><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/BF01171431</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-5970
ispartof Acta mechanica, 1996-01, Vol.116 (1-4), p.213-222
issn 0001-5970
1619-6937
language eng
recordid cdi_proquest_miscellaneous_746186533
source SpringerLink Journals - AutoHoldings
subjects Attenuation
Bonding
Cylinders (shapes)
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Interfaces (materials)
Laminated composites
Mathematical models
Mechanical waves
Numerical methods
Physics
Piezoelectric materials
Solid mechanics
Structural and continuum mechanics
Structures (built objects)
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
Vibrations and mechanical waves
title Axisymmetric vibration of piezocomposite hollow circular cylinder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A50%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Axisymmetric%20vibration%20of%20piezocomposite%20hollow%20circular%20cylinder&rft.jtitle=Acta%20mechanica&rft.au=PAUL,%20H.%20S&rft.date=1996-01-01&rft.volume=116&rft.issue=1-4&rft.spage=213&rft.epage=222&rft.pages=213-222&rft.issn=0001-5970&rft.eissn=1619-6937&rft.coden=AMHCAP&rft_id=info:doi/10.1007/BF01171431&rft_dat=%3Cproquest_cross%3E746186533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=746186533&rft_id=info:pmid/&rfr_iscdi=true