Axisymmetric vibration of piezocomposite hollow circular cylinder
The axisymmetric vibration of a piezoelectric laminated hollow circular cylinder has been studied for an imperfect interface model. The frequency equation is derived for traction free inner and outer surfaces of the hollow cylinder with continuity conditions at the bonding interfaces. The composite...
Gespeichert in:
Veröffentlicht in: | Acta mechanica 1996-01, Vol.116 (1-4), p.213-222 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 222 |
---|---|
container_issue | 1-4 |
container_start_page | 213 |
container_title | Acta mechanica |
container_volume | 116 |
creator | PAUL, H. S NELSON, V. K |
description | The axisymmetric vibration of a piezoelectric laminated hollow circular cylinder has been studied for an imperfect interface model. The frequency equation is derived for traction free inner and outer surfaces of the hollow cylinder with continuity conditions at the bonding interfaces. The composite cylinder is composed of two different piezoelectric materials belonging to 6 mm class and a hypothetical Linear Elastic Material with Voids (LEMV) as bonding layer. Numerical solutions of the frequency equation are obtained for the composite cylinder ceramic(1)/LEMV/ceramic(2). Computational results are presented as dispersion curves as well as in tables to characterize the attenuation of axial waves for three layered cylinders with and without voids in the thin LEMV layer. |
doi_str_mv | 10.1007/BF01171431 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746186533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>746186533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-5b9bbf03c5682c9df7a20a0ab134448bfe746f8c9aa5d83e128a9313e5d66dc33</originalsourceid><addsrcrecordid>eNpFkFFLwzAUhYMoOKcv_oI-CIJQzW3apHmcY1Nh4Is-l9s0wUja1KRV56-3Y0OfLge-83E5hFwCvQVKxd39mgIIyBkckRlwkCmXTByTGaUU0kIKekrOYnyfUiZymJHF4tvGbdvqIViVfNo64GB9l3iT9Fb_eOXb3kc76OTNO-e_EmWDGh2GRG2d7RodzsmJQRf1xeHOyet69bJ8TDfPD0_LxSZVjMGQFrWsa0OZKniZKdkYgRlFijWwPM_L2miRc1MqiVg0JdOQlSgZMF00nDeTY06u994--I9Rx6FqbVTaOey0H2M11aHkBduRN3tSBR9j0Kbqg20xbCug1W6m6n-mCb46aDEqdCZgp2z8a7Dpj2k79gvPn2dC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746186533</pqid></control><display><type>article</type><title>Axisymmetric vibration of piezocomposite hollow circular cylinder</title><source>SpringerLink Journals - AutoHoldings</source><creator>PAUL, H. S ; NELSON, V. K</creator><creatorcontrib>PAUL, H. S ; NELSON, V. K</creatorcontrib><description>The axisymmetric vibration of a piezoelectric laminated hollow circular cylinder has been studied for an imperfect interface model. The frequency equation is derived for traction free inner and outer surfaces of the hollow cylinder with continuity conditions at the bonding interfaces. The composite cylinder is composed of two different piezoelectric materials belonging to 6 mm class and a hypothetical Linear Elastic Material with Voids (LEMV) as bonding layer. Numerical solutions of the frequency equation are obtained for the composite cylinder ceramic(1)/LEMV/ceramic(2). Computational results are presented as dispersion curves as well as in tables to characterize the attenuation of axial waves for three layered cylinders with and without voids in the thin LEMV layer.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/BF01171431</identifier><identifier>CODEN: AMHCAP</identifier><language>eng</language><publisher>Wien: Springer</publisher><subject>Attenuation ; Bonding ; Cylinders (shapes) ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Interfaces (materials) ; Laminated composites ; Mathematical models ; Mechanical waves ; Numerical methods ; Physics ; Piezoelectric materials ; Solid mechanics ; Structural and continuum mechanics ; Structures (built objects) ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Vibrations and mechanical waves</subject><ispartof>Acta mechanica, 1996-01, Vol.116 (1-4), p.213-222</ispartof><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-5b9bbf03c5682c9df7a20a0ab134448bfe746f8c9aa5d83e128a9313e5d66dc33</citedby><cites>FETCH-LOGICAL-c331t-5b9bbf03c5682c9df7a20a0ab134448bfe746f8c9aa5d83e128a9313e5d66dc33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3128000$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>PAUL, H. S</creatorcontrib><creatorcontrib>NELSON, V. K</creatorcontrib><title>Axisymmetric vibration of piezocomposite hollow circular cylinder</title><title>Acta mechanica</title><description>The axisymmetric vibration of a piezoelectric laminated hollow circular cylinder has been studied for an imperfect interface model. The frequency equation is derived for traction free inner and outer surfaces of the hollow cylinder with continuity conditions at the bonding interfaces. The composite cylinder is composed of two different piezoelectric materials belonging to 6 mm class and a hypothetical Linear Elastic Material with Voids (LEMV) as bonding layer. Numerical solutions of the frequency equation are obtained for the composite cylinder ceramic(1)/LEMV/ceramic(2). Computational results are presented as dispersion curves as well as in tables to characterize the attenuation of axial waves for three layered cylinders with and without voids in the thin LEMV layer.</description><subject>Attenuation</subject><subject>Bonding</subject><subject>Cylinders (shapes)</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Interfaces (materials)</subject><subject>Laminated composites</subject><subject>Mathematical models</subject><subject>Mechanical waves</subject><subject>Numerical methods</subject><subject>Physics</subject><subject>Piezoelectric materials</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Structures (built objects)</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Vibrations and mechanical waves</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNpFkFFLwzAUhYMoOKcv_oI-CIJQzW3apHmcY1Nh4Is-l9s0wUja1KRV56-3Y0OfLge-83E5hFwCvQVKxd39mgIIyBkckRlwkCmXTByTGaUU0kIKekrOYnyfUiZymJHF4tvGbdvqIViVfNo64GB9l3iT9Fb_eOXb3kc76OTNO-e_EmWDGh2GRG2d7RodzsmJQRf1xeHOyet69bJ8TDfPD0_LxSZVjMGQFrWsa0OZKniZKdkYgRlFijWwPM_L2miRc1MqiVg0JdOQlSgZMF00nDeTY06u994--I9Rx6FqbVTaOey0H2M11aHkBduRN3tSBR9j0Kbqg20xbCug1W6m6n-mCb46aDEqdCZgp2z8a7Dpj2k79gvPn2dC</recordid><startdate>19960101</startdate><enddate>19960101</enddate><creator>PAUL, H. S</creator><creator>NELSON, V. K</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>19960101</creationdate><title>Axisymmetric vibration of piezocomposite hollow circular cylinder</title><author>PAUL, H. S ; NELSON, V. K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-5b9bbf03c5682c9df7a20a0ab134448bfe746f8c9aa5d83e128a9313e5d66dc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Attenuation</topic><topic>Bonding</topic><topic>Cylinders (shapes)</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Interfaces (materials)</topic><topic>Laminated composites</topic><topic>Mathematical models</topic><topic>Mechanical waves</topic><topic>Numerical methods</topic><topic>Physics</topic><topic>Piezoelectric materials</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Structures (built objects)</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Vibrations and mechanical waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PAUL, H. S</creatorcontrib><creatorcontrib>NELSON, V. K</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PAUL, H. S</au><au>NELSON, V. K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Axisymmetric vibration of piezocomposite hollow circular cylinder</atitle><jtitle>Acta mechanica</jtitle><date>1996-01-01</date><risdate>1996</risdate><volume>116</volume><issue>1-4</issue><spage>213</spage><epage>222</epage><pages>213-222</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><coden>AMHCAP</coden><abstract>The axisymmetric vibration of a piezoelectric laminated hollow circular cylinder has been studied for an imperfect interface model. The frequency equation is derived for traction free inner and outer surfaces of the hollow cylinder with continuity conditions at the bonding interfaces. The composite cylinder is composed of two different piezoelectric materials belonging to 6 mm class and a hypothetical Linear Elastic Material with Voids (LEMV) as bonding layer. Numerical solutions of the frequency equation are obtained for the composite cylinder ceramic(1)/LEMV/ceramic(2). Computational results are presented as dispersion curves as well as in tables to characterize the attenuation of axial waves for three layered cylinders with and without voids in the thin LEMV layer.</abstract><cop>Wien</cop><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/BF01171431</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-5970 |
ispartof | Acta mechanica, 1996-01, Vol.116 (1-4), p.213-222 |
issn | 0001-5970 1619-6937 |
language | eng |
recordid | cdi_proquest_miscellaneous_746186533 |
source | SpringerLink Journals - AutoHoldings |
subjects | Attenuation Bonding Cylinders (shapes) Exact sciences and technology Fundamental areas of phenomenology (including applications) Interfaces (materials) Laminated composites Mathematical models Mechanical waves Numerical methods Physics Piezoelectric materials Solid mechanics Structural and continuum mechanics Structures (built objects) Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) Vibrations and mechanical waves |
title | Axisymmetric vibration of piezocomposite hollow circular cylinder |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A50%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Axisymmetric%20vibration%20of%20piezocomposite%20hollow%20circular%20cylinder&rft.jtitle=Acta%20mechanica&rft.au=PAUL,%20H.%20S&rft.date=1996-01-01&rft.volume=116&rft.issue=1-4&rft.spage=213&rft.epage=222&rft.pages=213-222&rft.issn=0001-5970&rft.eissn=1619-6937&rft.coden=AMHCAP&rft_id=info:doi/10.1007/BF01171431&rft_dat=%3Cproquest_cross%3E746186533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=746186533&rft_id=info:pmid/&rfr_iscdi=true |