Time-Optimal Control of Robotic Manipulators Along Specified Paths

The minimum-time manipulator control problem is solved for the case when the path is specified and the actuator torque limitations are known. The optimal open-loop torques are found, and a method is given for implementing these torques with a conventional linear feedback control system. The algorith...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The International journal of robotics research 1985-01, Vol.4 (3), p.3-17
Hauptverfasser: Bobrow, J.E., Dubowsky, S., Gibson, J.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 3
container_start_page 3
container_title The International journal of robotics research
container_volume 4
creator Bobrow, J.E.
Dubowsky, S.
Gibson, J.S.
description The minimum-time manipulator control problem is solved for the case when the path is specified and the actuator torque limitations are known. The optimal open-loop torques are found, and a method is given for implementing these torques with a conventional linear feedback control system. The algorithm allows bounds on the torques that may be arbitrary functions of the joint angles and angular velocities. This method is valid for any path and orientation of the end- effector that is specified. The algorithm can be used for any manipulator that has rigid links, known dynamic equations of motion, and joint angles that can be determined at a given position on the path.
doi_str_mv 10.1177/027836498500400301
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746176912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_027836498500400301</sage_id><sourcerecordid>746176912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-59d5cfd369ae676c65dd5c0b1850dbca61a406bb5a39bd01ccfbf3abe71ed88c3</originalsourceid><addsrcrecordid>eNqN0U1LwzAYB_AgCs7pF_DUg-ipLmnz0h7n8A0mE53nkqTJzMiamqQHv70ZG16E4SWB8Hv-5HkeAC4RvEWIsQksWFVSXFcEQgxhCdERGCGGUV4iRo_BaAvyrTgFZyGsYTIU1iNwtzQblS_6aDbcZjPXRe9s5nT25oSLRmYvvDP9YHl0PmRT67pV9t4rabRRbfbK42c4Byea26Au9vcYfDzcL2dP-Xzx-DybznOJGY45qVsidVvSmivKqKSkTQ9QoPTnVkhOEceQCkF4WYsWIim10CUXiiHVVpUsx-Bml9t79zWoEJuNCVJZyzvlhtAwTFOvNSqSvD4oC1wRmo5_QVgRkmCxg9K7ELzSTe_TxPx3g2Cz3UDzdwOp6GqfzoPkVnveSRN-KysKEUM0scmOBb5SzdoNvktjPBT8A2vgkng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24850855</pqid></control><display><type>article</type><title>Time-Optimal Control of Robotic Manipulators Along Specified Paths</title><source>Access via SAGE</source><creator>Bobrow, J.E. ; Dubowsky, S. ; Gibson, J.S.</creator><creatorcontrib>Bobrow, J.E. ; Dubowsky, S. ; Gibson, J.S.</creatorcontrib><description>The minimum-time manipulator control problem is solved for the case when the path is specified and the actuator torque limitations are known. The optimal open-loop torques are found, and a method is given for implementing these torques with a conventional linear feedback control system. The algorithm allows bounds on the torques that may be arbitrary functions of the joint angles and angular velocities. This method is valid for any path and orientation of the end- effector that is specified. The algorithm can be used for any manipulator that has rigid links, known dynamic equations of motion, and joint angles that can be determined at a given position on the path.</description><identifier>ISSN: 0278-3649</identifier><identifier>EISSN: 1741-3176</identifier><identifier>DOI: 10.1177/027836498500400301</identifier><identifier>CODEN: IJRREL</identifier><language>eng</language><publisher>Thousand Oaks, CA: Sage Publications</publisher><subject>Applied sciences ; Computer science; control theory; systems ; control systems ; Control theory. Systems ; Exact sciences and technology ; manipulators ; mechanical handling ; numerical analysis ; optimal control ; Robotics ; robots ; torque control ; velocity</subject><ispartof>The International journal of robotics research, 1985-01, Vol.4 (3), p.3-17</ispartof><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-59d5cfd369ae676c65dd5c0b1850dbca61a406bb5a39bd01ccfbf3abe71ed88c3</citedby><cites>FETCH-LOGICAL-c474t-59d5cfd369ae676c65dd5c0b1850dbca61a406bb5a39bd01ccfbf3abe71ed88c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/027836498500400301$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/027836498500400301$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8601716$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bobrow, J.E.</creatorcontrib><creatorcontrib>Dubowsky, S.</creatorcontrib><creatorcontrib>Gibson, J.S.</creatorcontrib><title>Time-Optimal Control of Robotic Manipulators Along Specified Paths</title><title>The International journal of robotics research</title><description>The minimum-time manipulator control problem is solved for the case when the path is specified and the actuator torque limitations are known. The optimal open-loop torques are found, and a method is given for implementing these torques with a conventional linear feedback control system. The algorithm allows bounds on the torques that may be arbitrary functions of the joint angles and angular velocities. This method is valid for any path and orientation of the end- effector that is specified. The algorithm can be used for any manipulator that has rigid links, known dynamic equations of motion, and joint angles that can be determined at a given position on the path.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>control systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>manipulators</subject><subject>mechanical handling</subject><subject>numerical analysis</subject><subject>optimal control</subject><subject>Robotics</subject><subject>robots</subject><subject>torque control</subject><subject>velocity</subject><issn>0278-3649</issn><issn>1741-3176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNqN0U1LwzAYB_AgCs7pF_DUg-ipLmnz0h7n8A0mE53nkqTJzMiamqQHv70ZG16E4SWB8Hv-5HkeAC4RvEWIsQksWFVSXFcEQgxhCdERGCGGUV4iRo_BaAvyrTgFZyGsYTIU1iNwtzQblS_6aDbcZjPXRe9s5nT25oSLRmYvvDP9YHl0PmRT67pV9t4rabRRbfbK42c4Byea26Au9vcYfDzcL2dP-Xzx-DybznOJGY45qVsidVvSmivKqKSkTQ9QoPTnVkhOEceQCkF4WYsWIim10CUXiiHVVpUsx-Bml9t79zWoEJuNCVJZyzvlhtAwTFOvNSqSvD4oC1wRmo5_QVgRkmCxg9K7ELzSTe_TxPx3g2Cz3UDzdwOp6GqfzoPkVnveSRN-KysKEUM0scmOBb5SzdoNvktjPBT8A2vgkng</recordid><startdate>19850101</startdate><enddate>19850101</enddate><creator>Bobrow, J.E.</creator><creator>Dubowsky, S.</creator><creator>Gibson, J.S.</creator><general>Sage Publications</general><general>Sage Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>7SP</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>7TC</scope></search><sort><creationdate>19850101</creationdate><title>Time-Optimal Control of Robotic Manipulators Along Specified Paths</title><author>Bobrow, J.E. ; Dubowsky, S. ; Gibson, J.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-59d5cfd369ae676c65dd5c0b1850dbca61a406bb5a39bd01ccfbf3abe71ed88c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>control systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>manipulators</topic><topic>mechanical handling</topic><topic>numerical analysis</topic><topic>optimal control</topic><topic>Robotics</topic><topic>robots</topic><topic>torque control</topic><topic>velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bobrow, J.E.</creatorcontrib><creatorcontrib>Dubowsky, S.</creatorcontrib><creatorcontrib>Gibson, J.S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>The International journal of robotics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bobrow, J.E.</au><au>Dubowsky, S.</au><au>Gibson, J.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-Optimal Control of Robotic Manipulators Along Specified Paths</atitle><jtitle>The International journal of robotics research</jtitle><date>1985-01-01</date><risdate>1985</risdate><volume>4</volume><issue>3</issue><spage>3</spage><epage>17</epage><pages>3-17</pages><issn>0278-3649</issn><eissn>1741-3176</eissn><coden>IJRREL</coden><abstract>The minimum-time manipulator control problem is solved for the case when the path is specified and the actuator torque limitations are known. The optimal open-loop torques are found, and a method is given for implementing these torques with a conventional linear feedback control system. The algorithm allows bounds on the torques that may be arbitrary functions of the joint angles and angular velocities. This method is valid for any path and orientation of the end- effector that is specified. The algorithm can be used for any manipulator that has rigid links, known dynamic equations of motion, and joint angles that can be determined at a given position on the path.</abstract><cop>Thousand Oaks, CA</cop><pub>Sage Publications</pub><doi>10.1177/027836498500400301</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-3649
ispartof The International journal of robotics research, 1985-01, Vol.4 (3), p.3-17
issn 0278-3649
1741-3176
language eng
recordid cdi_proquest_miscellaneous_746176912
source Access via SAGE
subjects Applied sciences
Computer science
control theory
systems
control systems
Control theory. Systems
Exact sciences and technology
manipulators
mechanical handling
numerical analysis
optimal control
Robotics
robots
torque control
velocity
title Time-Optimal Control of Robotic Manipulators Along Specified Paths
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-Optimal%20Control%20of%20Robotic%20Manipulators%20Along%20Specified%20Paths&rft.jtitle=The%20International%20journal%20of%20robotics%20research&rft.au=Bobrow,%20J.E.&rft.date=1985-01-01&rft.volume=4&rft.issue=3&rft.spage=3&rft.epage=17&rft.pages=3-17&rft.issn=0278-3649&rft.eissn=1741-3176&rft.coden=IJRREL&rft_id=info:doi/10.1177/027836498500400301&rft_dat=%3Cproquest_cross%3E746176912%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24850855&rft_id=info:pmid/&rft_sage_id=10.1177_027836498500400301&rfr_iscdi=true