Time-Optimal Control of Robotic Manipulators Along Specified Paths
The minimum-time manipulator control problem is solved for the case when the path is specified and the actuator torque limitations are known. The optimal open-loop torques are found, and a method is given for implementing these torques with a conventional linear feedback control system. The algorith...
Gespeichert in:
Veröffentlicht in: | The International journal of robotics research 1985-01, Vol.4 (3), p.3-17 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 3 |
container_start_page | 3 |
container_title | The International journal of robotics research |
container_volume | 4 |
creator | Bobrow, J.E. Dubowsky, S. Gibson, J.S. |
description | The minimum-time manipulator control problem is solved for the case when the path is specified and the actuator torque limitations are known. The optimal open-loop torques are found, and a method is given for implementing these torques with a conventional linear feedback control system. The algorithm allows bounds on the torques that may be arbitrary functions of the joint angles and angular velocities. This method is valid for any path and orientation of the end- effector that is specified. The algorithm can be used for any manipulator that has rigid links, known dynamic equations of motion, and joint angles that can be determined at a given position on the path. |
doi_str_mv | 10.1177/027836498500400301 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746176912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_027836498500400301</sage_id><sourcerecordid>746176912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-59d5cfd369ae676c65dd5c0b1850dbca61a406bb5a39bd01ccfbf3abe71ed88c3</originalsourceid><addsrcrecordid>eNqN0U1LwzAYB_AgCs7pF_DUg-ipLmnz0h7n8A0mE53nkqTJzMiamqQHv70ZG16E4SWB8Hv-5HkeAC4RvEWIsQksWFVSXFcEQgxhCdERGCGGUV4iRo_BaAvyrTgFZyGsYTIU1iNwtzQblS_6aDbcZjPXRe9s5nT25oSLRmYvvDP9YHl0PmRT67pV9t4rabRRbfbK42c4Byea26Au9vcYfDzcL2dP-Xzx-DybznOJGY45qVsidVvSmivKqKSkTQ9QoPTnVkhOEceQCkF4WYsWIim10CUXiiHVVpUsx-Bml9t79zWoEJuNCVJZyzvlhtAwTFOvNSqSvD4oC1wRmo5_QVgRkmCxg9K7ELzSTe_TxPx3g2Cz3UDzdwOp6GqfzoPkVnveSRN-KysKEUM0scmOBb5SzdoNvktjPBT8A2vgkng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24850855</pqid></control><display><type>article</type><title>Time-Optimal Control of Robotic Manipulators Along Specified Paths</title><source>Access via SAGE</source><creator>Bobrow, J.E. ; Dubowsky, S. ; Gibson, J.S.</creator><creatorcontrib>Bobrow, J.E. ; Dubowsky, S. ; Gibson, J.S.</creatorcontrib><description>The minimum-time manipulator control problem is solved for the case when the path is specified and the actuator torque limitations are known. The optimal open-loop torques are found, and a method is given for implementing these torques with a conventional linear feedback control system. The algorithm allows bounds on the torques that may be arbitrary functions of the joint angles and angular velocities. This method is valid for any path and orientation of the end- effector that is specified. The algorithm can be used for any manipulator that has rigid links, known dynamic equations of motion, and joint angles that can be determined at a given position on the path.</description><identifier>ISSN: 0278-3649</identifier><identifier>EISSN: 1741-3176</identifier><identifier>DOI: 10.1177/027836498500400301</identifier><identifier>CODEN: IJRREL</identifier><language>eng</language><publisher>Thousand Oaks, CA: Sage Publications</publisher><subject>Applied sciences ; Computer science; control theory; systems ; control systems ; Control theory. Systems ; Exact sciences and technology ; manipulators ; mechanical handling ; numerical analysis ; optimal control ; Robotics ; robots ; torque control ; velocity</subject><ispartof>The International journal of robotics research, 1985-01, Vol.4 (3), p.3-17</ispartof><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-59d5cfd369ae676c65dd5c0b1850dbca61a406bb5a39bd01ccfbf3abe71ed88c3</citedby><cites>FETCH-LOGICAL-c474t-59d5cfd369ae676c65dd5c0b1850dbca61a406bb5a39bd01ccfbf3abe71ed88c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/027836498500400301$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/027836498500400301$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8601716$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bobrow, J.E.</creatorcontrib><creatorcontrib>Dubowsky, S.</creatorcontrib><creatorcontrib>Gibson, J.S.</creatorcontrib><title>Time-Optimal Control of Robotic Manipulators Along Specified Paths</title><title>The International journal of robotics research</title><description>The minimum-time manipulator control problem is solved for the case when the path is specified and the actuator torque limitations are known. The optimal open-loop torques are found, and a method is given for implementing these torques with a conventional linear feedback control system. The algorithm allows bounds on the torques that may be arbitrary functions of the joint angles and angular velocities. This method is valid for any path and orientation of the end- effector that is specified. The algorithm can be used for any manipulator that has rigid links, known dynamic equations of motion, and joint angles that can be determined at a given position on the path.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>control systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>manipulators</subject><subject>mechanical handling</subject><subject>numerical analysis</subject><subject>optimal control</subject><subject>Robotics</subject><subject>robots</subject><subject>torque control</subject><subject>velocity</subject><issn>0278-3649</issn><issn>1741-3176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNqN0U1LwzAYB_AgCs7pF_DUg-ipLmnz0h7n8A0mE53nkqTJzMiamqQHv70ZG16E4SWB8Hv-5HkeAC4RvEWIsQksWFVSXFcEQgxhCdERGCGGUV4iRo_BaAvyrTgFZyGsYTIU1iNwtzQblS_6aDbcZjPXRe9s5nT25oSLRmYvvDP9YHl0PmRT67pV9t4rabRRbfbK42c4Byea26Au9vcYfDzcL2dP-Xzx-DybznOJGY45qVsidVvSmivKqKSkTQ9QoPTnVkhOEceQCkF4WYsWIim10CUXiiHVVpUsx-Bml9t79zWoEJuNCVJZyzvlhtAwTFOvNSqSvD4oC1wRmo5_QVgRkmCxg9K7ELzSTe_TxPx3g2Cz3UDzdwOp6GqfzoPkVnveSRN-KysKEUM0scmOBb5SzdoNvktjPBT8A2vgkng</recordid><startdate>19850101</startdate><enddate>19850101</enddate><creator>Bobrow, J.E.</creator><creator>Dubowsky, S.</creator><creator>Gibson, J.S.</creator><general>Sage Publications</general><general>Sage Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>7SP</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>7TC</scope></search><sort><creationdate>19850101</creationdate><title>Time-Optimal Control of Robotic Manipulators Along Specified Paths</title><author>Bobrow, J.E. ; Dubowsky, S. ; Gibson, J.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-59d5cfd369ae676c65dd5c0b1850dbca61a406bb5a39bd01ccfbf3abe71ed88c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>control systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>manipulators</topic><topic>mechanical handling</topic><topic>numerical analysis</topic><topic>optimal control</topic><topic>Robotics</topic><topic>robots</topic><topic>torque control</topic><topic>velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bobrow, J.E.</creatorcontrib><creatorcontrib>Dubowsky, S.</creatorcontrib><creatorcontrib>Gibson, J.S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>The International journal of robotics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bobrow, J.E.</au><au>Dubowsky, S.</au><au>Gibson, J.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-Optimal Control of Robotic Manipulators Along Specified Paths</atitle><jtitle>The International journal of robotics research</jtitle><date>1985-01-01</date><risdate>1985</risdate><volume>4</volume><issue>3</issue><spage>3</spage><epage>17</epage><pages>3-17</pages><issn>0278-3649</issn><eissn>1741-3176</eissn><coden>IJRREL</coden><abstract>The minimum-time manipulator control problem is solved for the case when the path is specified and the actuator torque limitations are known. The optimal open-loop torques are found, and a method is given for implementing these torques with a conventional linear feedback control system. The algorithm allows bounds on the torques that may be arbitrary functions of the joint angles and angular velocities. This method is valid for any path and orientation of the end- effector that is specified. The algorithm can be used for any manipulator that has rigid links, known dynamic equations of motion, and joint angles that can be determined at a given position on the path.</abstract><cop>Thousand Oaks, CA</cop><pub>Sage Publications</pub><doi>10.1177/027836498500400301</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-3649 |
ispartof | The International journal of robotics research, 1985-01, Vol.4 (3), p.3-17 |
issn | 0278-3649 1741-3176 |
language | eng |
recordid | cdi_proquest_miscellaneous_746176912 |
source | Access via SAGE |
subjects | Applied sciences Computer science control theory systems control systems Control theory. Systems Exact sciences and technology manipulators mechanical handling numerical analysis optimal control Robotics robots torque control velocity |
title | Time-Optimal Control of Robotic Manipulators Along Specified Paths |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-Optimal%20Control%20of%20Robotic%20Manipulators%20Along%20Specified%20Paths&rft.jtitle=The%20International%20journal%20of%20robotics%20research&rft.au=Bobrow,%20J.E.&rft.date=1985-01-01&rft.volume=4&rft.issue=3&rft.spage=3&rft.epage=17&rft.pages=3-17&rft.issn=0278-3649&rft.eissn=1741-3176&rft.coden=IJRREL&rft_id=info:doi/10.1177/027836498500400301&rft_dat=%3Cproquest_cross%3E746176912%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24850855&rft_id=info:pmid/&rft_sage_id=10.1177_027836498500400301&rfr_iscdi=true |