Midlevel Ventilation's Constraint on Tropical Cyclone Intensity
Midlevel ventilation, or the flux of low-entropy air into the inner core of a tropical cyclone (TC), is a hypothesized mechanism by which environmental vertical wind shear can constrain a tropical cyclone’s intensity. An idealized framework based on steadiness, axisymmetry, and slantwise neutrality...
Gespeichert in:
Veröffentlicht in: | Journal of the atmospheric sciences 2010-06, Vol.67 (6), p.1817-1830 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1830 |
---|---|
container_issue | 6 |
container_start_page | 1817 |
container_title | Journal of the atmospheric sciences |
container_volume | 67 |
creator | TANG, Brian EMANUEL, Kerry |
description | Midlevel ventilation, or the flux of low-entropy air into the inner core of a tropical cyclone (TC), is a hypothesized mechanism by which environmental vertical wind shear can constrain a tropical cyclone’s intensity. An idealized framework based on steadiness, axisymmetry, and slantwise neutrality is developed to assess how ventilation affects tropical cyclone intensity via two possible pathways: the first through downdrafts outside the eyewall and the second through eddy fluxes directly into the eyewall. For both pathways, ventilation has a detrimental effect on tropical cyclone intensity by decreasing the maximum steady-state intensity significantly below the potential intensity, imposing a minimum intensity below which a TC will unconditionally decay, and providing an upper-ventilation bound beyond which no steady tropical cyclone can exist. Ventilation also decreases the thermodynamic efficiency as the eyewall becomes less buoyant relative to the environment, which compounds the effects of ventilation alone. Finally, the formulation presented in this study is shown to be invariant across a range of thermodynamic environments after a suitable normalization and shows little sensitivity to external parameters. |
doi_str_mv | 10.1175/2010jas3318.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746163628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075698151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-4a89c43d950b6742a8268b62168d3631b9b32b075414d73e22d92542c0974caa3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKtH74siPW1NJh-bnESKH5WKB6vXJZtNIWWb1CQV-u_d0uJBcC5zed53hgehS4LHhFT8FjDBS50oJXJMjtCAcMAlZkIdowHGACVTIE_RWUpL3A9UZIDuXl3b2W_bFZ_WZ9fp7IIfpWISfMpRO5-L4It5DGtndFdMtqYL3hZTn61PLm_P0clCd8leHPYQfTw-zCfP5eztaTq5n5WGY5pLpqUyjLaK40ZUDLQEIRsBRMiWCkoa1VBocMUZYW1FLUCrgDMwWFXMaE2HaLTvXcfwtbEp1yuXjO067W3YpLpigggqQPbk1R9yGTbR98_VAlPob1DeQ9f_QSABKwlKqJ4q95SJIaVoF_U6upWO25rgeqe83il_uX_fKa9Jz98cWnXqbS2i9sal3xCAqjgXlP4ASa59VQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2820982969</pqid></control><display><type>article</type><title>Midlevel Ventilation's Constraint on Tropical Cyclone Intensity</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>TANG, Brian ; EMANUEL, Kerry</creator><creatorcontrib>TANG, Brian ; EMANUEL, Kerry</creatorcontrib><description>Midlevel ventilation, or the flux of low-entropy air into the inner core of a tropical cyclone (TC), is a hypothesized mechanism by which environmental vertical wind shear can constrain a tropical cyclone’s intensity. An idealized framework based on steadiness, axisymmetry, and slantwise neutrality is developed to assess how ventilation affects tropical cyclone intensity via two possible pathways: the first through downdrafts outside the eyewall and the second through eddy fluxes directly into the eyewall. For both pathways, ventilation has a detrimental effect on tropical cyclone intensity by decreasing the maximum steady-state intensity significantly below the potential intensity, imposing a minimum intensity below which a TC will unconditionally decay, and providing an upper-ventilation bound beyond which no steady tropical cyclone can exist. Ventilation also decreases the thermodynamic efficiency as the eyewall becomes less buoyant relative to the environment, which compounds the effects of ventilation alone. Finally, the formulation presented in this study is shown to be invariant across a range of thermodynamic environments after a suitable normalization and shows little sensitivity to external parameters.</description><identifier>ISSN: 0022-4928</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/2010jas3318.1</identifier><identifier>CODEN: JAHSAK</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Climate change ; Cyclones ; Downdraft ; Earth, ocean, space ; Entropy ; Exact sciences and technology ; External geophysics ; Heat engines ; Hurricanes ; Hypotheses ; Marine ; Meteorology ; Ocean circulation ; Parameter sensitivity ; Physics of the high neutral atmosphere ; Storms, hurricanes, tornadoes, thunderstorms ; Thermodynamic efficiency ; Thermodynamics ; Tropical cyclone intensities ; Tropical cyclones ; Ventilation ; Vertical wind shear ; Wind shear</subject><ispartof>Journal of the atmospheric sciences, 2010-06, Vol.67 (6), p.1817-1830</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Meteorological Society 2010</rights><rights>Copyright American Meteorological Society Jun 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-4a89c43d950b6742a8268b62168d3631b9b32b075414d73e22d92542c0974caa3</citedby><cites>FETCH-LOGICAL-c503t-4a89c43d950b6742a8268b62168d3631b9b32b075414d73e22d92542c0974caa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3681,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22975563$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>TANG, Brian</creatorcontrib><creatorcontrib>EMANUEL, Kerry</creatorcontrib><title>Midlevel Ventilation's Constraint on Tropical Cyclone Intensity</title><title>Journal of the atmospheric sciences</title><description>Midlevel ventilation, or the flux of low-entropy air into the inner core of a tropical cyclone (TC), is a hypothesized mechanism by which environmental vertical wind shear can constrain a tropical cyclone’s intensity. An idealized framework based on steadiness, axisymmetry, and slantwise neutrality is developed to assess how ventilation affects tropical cyclone intensity via two possible pathways: the first through downdrafts outside the eyewall and the second through eddy fluxes directly into the eyewall. For both pathways, ventilation has a detrimental effect on tropical cyclone intensity by decreasing the maximum steady-state intensity significantly below the potential intensity, imposing a minimum intensity below which a TC will unconditionally decay, and providing an upper-ventilation bound beyond which no steady tropical cyclone can exist. Ventilation also decreases the thermodynamic efficiency as the eyewall becomes less buoyant relative to the environment, which compounds the effects of ventilation alone. Finally, the formulation presented in this study is shown to be invariant across a range of thermodynamic environments after a suitable normalization and shows little sensitivity to external parameters.</description><subject>Climate change</subject><subject>Cyclones</subject><subject>Downdraft</subject><subject>Earth, ocean, space</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Heat engines</subject><subject>Hurricanes</subject><subject>Hypotheses</subject><subject>Marine</subject><subject>Meteorology</subject><subject>Ocean circulation</subject><subject>Parameter sensitivity</subject><subject>Physics of the high neutral atmosphere</subject><subject>Storms, hurricanes, tornadoes, thunderstorms</subject><subject>Thermodynamic efficiency</subject><subject>Thermodynamics</subject><subject>Tropical cyclone intensities</subject><subject>Tropical cyclones</subject><subject>Ventilation</subject><subject>Vertical wind shear</subject><subject>Wind shear</subject><issn>0022-4928</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LAzEQhoMoWKtH74siPW1NJh-bnESKH5WKB6vXJZtNIWWb1CQV-u_d0uJBcC5zed53hgehS4LHhFT8FjDBS50oJXJMjtCAcMAlZkIdowHGACVTIE_RWUpL3A9UZIDuXl3b2W_bFZ_WZ9fp7IIfpWISfMpRO5-L4It5DGtndFdMtqYL3hZTn61PLm_P0clCd8leHPYQfTw-zCfP5eztaTq5n5WGY5pLpqUyjLaK40ZUDLQEIRsBRMiWCkoa1VBocMUZYW1FLUCrgDMwWFXMaE2HaLTvXcfwtbEp1yuXjO067W3YpLpigggqQPbk1R9yGTbR98_VAlPob1DeQ9f_QSABKwlKqJ4q95SJIaVoF_U6upWO25rgeqe83il_uX_fKa9Jz98cWnXqbS2i9sal3xCAqjgXlP4ASa59VQ</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>TANG, Brian</creator><creator>EMANUEL, Kerry</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20100601</creationdate><title>Midlevel Ventilation's Constraint on Tropical Cyclone Intensity</title><author>TANG, Brian ; EMANUEL, Kerry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-4a89c43d950b6742a8268b62168d3631b9b32b075414d73e22d92542c0974caa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Climate change</topic><topic>Cyclones</topic><topic>Downdraft</topic><topic>Earth, ocean, space</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Heat engines</topic><topic>Hurricanes</topic><topic>Hypotheses</topic><topic>Marine</topic><topic>Meteorology</topic><topic>Ocean circulation</topic><topic>Parameter sensitivity</topic><topic>Physics of the high neutral atmosphere</topic><topic>Storms, hurricanes, tornadoes, thunderstorms</topic><topic>Thermodynamic efficiency</topic><topic>Thermodynamics</topic><topic>Tropical cyclone intensities</topic><topic>Tropical cyclones</topic><topic>Ventilation</topic><topic>Vertical wind shear</topic><topic>Wind shear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TANG, Brian</creatorcontrib><creatorcontrib>EMANUEL, Kerry</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TANG, Brian</au><au>EMANUEL, Kerry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Midlevel Ventilation's Constraint on Tropical Cyclone Intensity</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>2010-06-01</date><risdate>2010</risdate><volume>67</volume><issue>6</issue><spage>1817</spage><epage>1830</epage><pages>1817-1830</pages><issn>0022-4928</issn><eissn>1520-0469</eissn><coden>JAHSAK</coden><abstract>Midlevel ventilation, or the flux of low-entropy air into the inner core of a tropical cyclone (TC), is a hypothesized mechanism by which environmental vertical wind shear can constrain a tropical cyclone’s intensity. An idealized framework based on steadiness, axisymmetry, and slantwise neutrality is developed to assess how ventilation affects tropical cyclone intensity via two possible pathways: the first through downdrafts outside the eyewall and the second through eddy fluxes directly into the eyewall. For both pathways, ventilation has a detrimental effect on tropical cyclone intensity by decreasing the maximum steady-state intensity significantly below the potential intensity, imposing a minimum intensity below which a TC will unconditionally decay, and providing an upper-ventilation bound beyond which no steady tropical cyclone can exist. Ventilation also decreases the thermodynamic efficiency as the eyewall becomes less buoyant relative to the environment, which compounds the effects of ventilation alone. Finally, the formulation presented in this study is shown to be invariant across a range of thermodynamic environments after a suitable normalization and shows little sensitivity to external parameters.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/2010jas3318.1</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4928 |
ispartof | Journal of the atmospheric sciences, 2010-06, Vol.67 (6), p.1817-1830 |
issn | 0022-4928 1520-0469 |
language | eng |
recordid | cdi_proquest_miscellaneous_746163628 |
source | American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Climate change Cyclones Downdraft Earth, ocean, space Entropy Exact sciences and technology External geophysics Heat engines Hurricanes Hypotheses Marine Meteorology Ocean circulation Parameter sensitivity Physics of the high neutral atmosphere Storms, hurricanes, tornadoes, thunderstorms Thermodynamic efficiency Thermodynamics Tropical cyclone intensities Tropical cyclones Ventilation Vertical wind shear Wind shear |
title | Midlevel Ventilation's Constraint on Tropical Cyclone Intensity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A50%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Midlevel%20Ventilation's%20Constraint%20on%20Tropical%20Cyclone%20Intensity&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=TANG,%20Brian&rft.date=2010-06-01&rft.volume=67&rft.issue=6&rft.spage=1817&rft.epage=1830&rft.pages=1817-1830&rft.issn=0022-4928&rft.eissn=1520-0469&rft.coden=JAHSAK&rft_id=info:doi/10.1175/2010jas3318.1&rft_dat=%3Cproquest_cross%3E2075698151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2820982969&rft_id=info:pmid/&rfr_iscdi=true |