Removal efficiencies and attachment coefficients for Cryptosporidium in sandy alluvial riverbank sediment

Riverbank filtration has been shown to be effective for removing viable Cryptosporidium parvum oocysts. Drinking water systems that employ riverbank filtration may receive additional treatment credits beyond that which they can obtain using traditional engineering approaches. In order to develop gui...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water research (Oxford) 2010-05, Vol.44 (9), p.2725-2734
Hauptverfasser: Faulkner, Barton R., Olivas, Yolanda, Ware, Michael W., Roberts, Michael G., Groves, Justin F., Bates, Kelly S., McCarty, Stephanie L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2734
container_issue 9
container_start_page 2725
container_title Water research (Oxford)
container_volume 44
creator Faulkner, Barton R.
Olivas, Yolanda
Ware, Michael W.
Roberts, Michael G.
Groves, Justin F.
Bates, Kelly S.
McCarty, Stephanie L.
description Riverbank filtration has been shown to be effective for removing viable Cryptosporidium parvum oocysts. Drinking water systems that employ riverbank filtration may receive additional treatment credits beyond that which they can obtain using traditional engineering approaches. In order to develop guidance for removal effectiveness, screening level predictive modeling by colloid filtration theory combined with advection and dispersion modeling is potentially useful. Currently, only few studies have measured basic effective colloid filtration parameters for Cryptosporidium oocysts with naturally occurring riverbank sediments. In the focus of this study we conducted flow column experiments in triplicate and measured effective attachment rate coefficients for sandy river sediments of the Southern Great Plains which are low in organic matter. We found that for sediment sampled from these high-energy rivers there was no apparent dependency of C. parvum removal with carbon content, bacterial colony forming units, or with gross texture properties of the sands. The differences in particle size distribution for the sediments suggested that straining did not play a role in removal efficiency. First-order colloid attachment rate coefficients followed lognormal distribution functions. The coefficients also appeared to be unrelated to the differences in particle size distributions of the sediments, bacterial counts, or levels of total carbon or total organic carbon. Using Monte Carlo analyses, the lowest observed 5th percentile was 8.0 × 10 −6 min −1 and the highest observed 95th percentile was 1.6 × 10 −3. Total log 10 removals ranged from 23 to 200 m −1. These results have application for screening level colloid filtration modeling of riverbank filtration in these systems.
doi_str_mv 10.1016/j.watres.2010.02.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746161766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043135410000783</els_id><sourcerecordid>1730056005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-5c881606f35b8276199c568be26fa5051cfbcf8e18ceec546b5e5da7ff2ecf683</originalsourceid><addsrcrecordid>eNqFkV2L1DAUhoso7rj6D0RzI3oz48ln05sFGfyCBUHd65CmJ5qxbcakHZl_b8bO6t16cQgkz_uewFNVTylsKFD1erf5ZaeEecOgXAHbANB71YrqulkzIfT9agUg-JpyKS6qRznvAIAx3jysLhhwUVPKV1X4jEM82J6g98EFHMtkYseO2Gmy7vuA40RcvH2dMvExkW067qeY9zGFLswDCSPJJXMktu_nQyh1KRwwtXb8QTJ24dTyuHrgbZ_xyfm8rG7evf26_bC-_vT-4_bN9doJDdNaOq2pAuW5bDWrFW0aJ5VukSlvJUjqfOu8RqodopNCtRJlZ2vvGTqvNL-sXi69-xR_zpgnM4TssO_tiHHOphaKKlor9X-SC2BSaFnIV3eStOYAUpUpqFhQl2LOCb3ZpzDYdDQUzEmc2ZlFnDmJM8BMEVdiz84b5nbA7m_o1lQBXpwBm53tfbJFVf7HMdUI2YjCPV84b6Ox31Jhbr6UTRyoFhxkU4irhcBi4RAwmfxHfPGU0E2mi-Huv_4GBRPDQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730056005</pqid></control><display><type>article</type><title>Removal efficiencies and attachment coefficients for Cryptosporidium in sandy alluvial riverbank sediment</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Faulkner, Barton R. ; Olivas, Yolanda ; Ware, Michael W. ; Roberts, Michael G. ; Groves, Justin F. ; Bates, Kelly S. ; McCarty, Stephanie L.</creator><creatorcontrib>Faulkner, Barton R. ; Olivas, Yolanda ; Ware, Michael W. ; Roberts, Michael G. ; Groves, Justin F. ; Bates, Kelly S. ; McCarty, Stephanie L.</creatorcontrib><description>Riverbank filtration has been shown to be effective for removing viable Cryptosporidium parvum oocysts. Drinking water systems that employ riverbank filtration may receive additional treatment credits beyond that which they can obtain using traditional engineering approaches. In order to develop guidance for removal effectiveness, screening level predictive modeling by colloid filtration theory combined with advection and dispersion modeling is potentially useful. Currently, only few studies have measured basic effective colloid filtration parameters for Cryptosporidium oocysts with naturally occurring riverbank sediments. In the focus of this study we conducted flow column experiments in triplicate and measured effective attachment rate coefficients for sandy river sediments of the Southern Great Plains which are low in organic matter. We found that for sediment sampled from these high-energy rivers there was no apparent dependency of C. parvum removal with carbon content, bacterial colony forming units, or with gross texture properties of the sands. The differences in particle size distribution for the sediments suggested that straining did not play a role in removal efficiency. First-order colloid attachment rate coefficients followed lognormal distribution functions. The coefficients also appeared to be unrelated to the differences in particle size distributions of the sediments, bacterial counts, or levels of total carbon or total organic carbon. Using Monte Carlo analyses, the lowest observed 5th percentile was 8.0 × 10 −6 min −1 and the highest observed 95th percentile was 1.6 × 10 −3. Total log 10 removals ranged from 23 to 200 m −1. These results have application for screening level colloid filtration modeling of riverbank filtration in these systems.</description><identifier>ISSN: 0043-1354</identifier><identifier>EISSN: 1879-2448</identifier><identifier>DOI: 10.1016/j.watres.2010.02.001</identifier><identifier>PMID: 20347113</identifier><identifier>CODEN: WATRAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>alluvium ; Applied sciences ; Attachment ; Bacteria ; Carbon ; Colloid filtration theory ; Colloid straining ; Colloids ; Cryptosporidium - isolation &amp; purification ; Cryptosporidium parvum ; drinking water ; environmental models ; Exact sciences and technology ; Filtration ; Freshwater ; Geologic Sediments - parasitology ; Mathematical models ; microbial contamination ; Monte Carlo method ; oocysts ; organic matter ; Other industrial wastes. Sewage sludge ; Particle Size ; particle size distribution ; Pollution ; riparian soils ; Riverbank filtration ; Rivers - parasitology ; sandy soils ; sediment contamination ; Sediments ; Silicon Dioxide ; Texture ; Transport modeling ; Wastes ; Water Purification - methods ; water quality ; Water Supply - standards ; water treatment ; Water treatment and pollution</subject><ispartof>Water research (Oxford), 2010-05, Vol.44 (9), p.2725-2734</ispartof><rights>2010</rights><rights>2015 INIST-CNRS</rights><rights>Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-5c881606f35b8276199c568be26fa5051cfbcf8e18ceec546b5e5da7ff2ecf683</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0043135410000783$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22694594$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20347113$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Faulkner, Barton R.</creatorcontrib><creatorcontrib>Olivas, Yolanda</creatorcontrib><creatorcontrib>Ware, Michael W.</creatorcontrib><creatorcontrib>Roberts, Michael G.</creatorcontrib><creatorcontrib>Groves, Justin F.</creatorcontrib><creatorcontrib>Bates, Kelly S.</creatorcontrib><creatorcontrib>McCarty, Stephanie L.</creatorcontrib><title>Removal efficiencies and attachment coefficients for Cryptosporidium in sandy alluvial riverbank sediment</title><title>Water research (Oxford)</title><addtitle>Water Res</addtitle><description>Riverbank filtration has been shown to be effective for removing viable Cryptosporidium parvum oocysts. Drinking water systems that employ riverbank filtration may receive additional treatment credits beyond that which they can obtain using traditional engineering approaches. In order to develop guidance for removal effectiveness, screening level predictive modeling by colloid filtration theory combined with advection and dispersion modeling is potentially useful. Currently, only few studies have measured basic effective colloid filtration parameters for Cryptosporidium oocysts with naturally occurring riverbank sediments. In the focus of this study we conducted flow column experiments in triplicate and measured effective attachment rate coefficients for sandy river sediments of the Southern Great Plains which are low in organic matter. We found that for sediment sampled from these high-energy rivers there was no apparent dependency of C. parvum removal with carbon content, bacterial colony forming units, or with gross texture properties of the sands. The differences in particle size distribution for the sediments suggested that straining did not play a role in removal efficiency. First-order colloid attachment rate coefficients followed lognormal distribution functions. The coefficients also appeared to be unrelated to the differences in particle size distributions of the sediments, bacterial counts, or levels of total carbon or total organic carbon. Using Monte Carlo analyses, the lowest observed 5th percentile was 8.0 × 10 −6 min −1 and the highest observed 95th percentile was 1.6 × 10 −3. Total log 10 removals ranged from 23 to 200 m −1. These results have application for screening level colloid filtration modeling of riverbank filtration in these systems.</description><subject>alluvium</subject><subject>Applied sciences</subject><subject>Attachment</subject><subject>Bacteria</subject><subject>Carbon</subject><subject>Colloid filtration theory</subject><subject>Colloid straining</subject><subject>Colloids</subject><subject>Cryptosporidium - isolation &amp; purification</subject><subject>Cryptosporidium parvum</subject><subject>drinking water</subject><subject>environmental models</subject><subject>Exact sciences and technology</subject><subject>Filtration</subject><subject>Freshwater</subject><subject>Geologic Sediments - parasitology</subject><subject>Mathematical models</subject><subject>microbial contamination</subject><subject>Monte Carlo method</subject><subject>oocysts</subject><subject>organic matter</subject><subject>Other industrial wastes. Sewage sludge</subject><subject>Particle Size</subject><subject>particle size distribution</subject><subject>Pollution</subject><subject>riparian soils</subject><subject>Riverbank filtration</subject><subject>Rivers - parasitology</subject><subject>sandy soils</subject><subject>sediment contamination</subject><subject>Sediments</subject><subject>Silicon Dioxide</subject><subject>Texture</subject><subject>Transport modeling</subject><subject>Wastes</subject><subject>Water Purification - methods</subject><subject>water quality</subject><subject>Water Supply - standards</subject><subject>water treatment</subject><subject>Water treatment and pollution</subject><issn>0043-1354</issn><issn>1879-2448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV2L1DAUhoso7rj6D0RzI3oz48ln05sFGfyCBUHd65CmJ5qxbcakHZl_b8bO6t16cQgkz_uewFNVTylsKFD1erf5ZaeEecOgXAHbANB71YrqulkzIfT9agUg-JpyKS6qRznvAIAx3jysLhhwUVPKV1X4jEM82J6g98EFHMtkYseO2Gmy7vuA40RcvH2dMvExkW067qeY9zGFLswDCSPJJXMktu_nQyh1KRwwtXb8QTJ24dTyuHrgbZ_xyfm8rG7evf26_bC-_vT-4_bN9doJDdNaOq2pAuW5bDWrFW0aJ5VukSlvJUjqfOu8RqodopNCtRJlZ2vvGTqvNL-sXi69-xR_zpgnM4TssO_tiHHOphaKKlor9X-SC2BSaFnIV3eStOYAUpUpqFhQl2LOCb3ZpzDYdDQUzEmc2ZlFnDmJM8BMEVdiz84b5nbA7m_o1lQBXpwBm53tfbJFVf7HMdUI2YjCPV84b6Ox31Jhbr6UTRyoFhxkU4irhcBi4RAwmfxHfPGU0E2mi-Huv_4GBRPDQg</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Faulkner, Barton R.</creator><creator>Olivas, Yolanda</creator><creator>Ware, Michael W.</creator><creator>Roberts, Michael G.</creator><creator>Groves, Justin F.</creator><creator>Bates, Kelly S.</creator><creator>McCarty, Stephanie L.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7X8</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7UA</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20100501</creationdate><title>Removal efficiencies and attachment coefficients for Cryptosporidium in sandy alluvial riverbank sediment</title><author>Faulkner, Barton R. ; Olivas, Yolanda ; Ware, Michael W. ; Roberts, Michael G. ; Groves, Justin F. ; Bates, Kelly S. ; McCarty, Stephanie L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-5c881606f35b8276199c568be26fa5051cfbcf8e18ceec546b5e5da7ff2ecf683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>alluvium</topic><topic>Applied sciences</topic><topic>Attachment</topic><topic>Bacteria</topic><topic>Carbon</topic><topic>Colloid filtration theory</topic><topic>Colloid straining</topic><topic>Colloids</topic><topic>Cryptosporidium - isolation &amp; purification</topic><topic>Cryptosporidium parvum</topic><topic>drinking water</topic><topic>environmental models</topic><topic>Exact sciences and technology</topic><topic>Filtration</topic><topic>Freshwater</topic><topic>Geologic Sediments - parasitology</topic><topic>Mathematical models</topic><topic>microbial contamination</topic><topic>Monte Carlo method</topic><topic>oocysts</topic><topic>organic matter</topic><topic>Other industrial wastes. Sewage sludge</topic><topic>Particle Size</topic><topic>particle size distribution</topic><topic>Pollution</topic><topic>riparian soils</topic><topic>Riverbank filtration</topic><topic>Rivers - parasitology</topic><topic>sandy soils</topic><topic>sediment contamination</topic><topic>Sediments</topic><topic>Silicon Dioxide</topic><topic>Texture</topic><topic>Transport modeling</topic><topic>Wastes</topic><topic>Water Purification - methods</topic><topic>water quality</topic><topic>Water Supply - standards</topic><topic>water treatment</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faulkner, Barton R.</creatorcontrib><creatorcontrib>Olivas, Yolanda</creatorcontrib><creatorcontrib>Ware, Michael W.</creatorcontrib><creatorcontrib>Roberts, Michael G.</creatorcontrib><creatorcontrib>Groves, Justin F.</creatorcontrib><creatorcontrib>Bates, Kelly S.</creatorcontrib><creatorcontrib>McCarty, Stephanie L.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Water research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faulkner, Barton R.</au><au>Olivas, Yolanda</au><au>Ware, Michael W.</au><au>Roberts, Michael G.</au><au>Groves, Justin F.</au><au>Bates, Kelly S.</au><au>McCarty, Stephanie L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Removal efficiencies and attachment coefficients for Cryptosporidium in sandy alluvial riverbank sediment</atitle><jtitle>Water research (Oxford)</jtitle><addtitle>Water Res</addtitle><date>2010-05-01</date><risdate>2010</risdate><volume>44</volume><issue>9</issue><spage>2725</spage><epage>2734</epage><pages>2725-2734</pages><issn>0043-1354</issn><eissn>1879-2448</eissn><coden>WATRAG</coden><abstract>Riverbank filtration has been shown to be effective for removing viable Cryptosporidium parvum oocysts. Drinking water systems that employ riverbank filtration may receive additional treatment credits beyond that which they can obtain using traditional engineering approaches. In order to develop guidance for removal effectiveness, screening level predictive modeling by colloid filtration theory combined with advection and dispersion modeling is potentially useful. Currently, only few studies have measured basic effective colloid filtration parameters for Cryptosporidium oocysts with naturally occurring riverbank sediments. In the focus of this study we conducted flow column experiments in triplicate and measured effective attachment rate coefficients for sandy river sediments of the Southern Great Plains which are low in organic matter. We found that for sediment sampled from these high-energy rivers there was no apparent dependency of C. parvum removal with carbon content, bacterial colony forming units, or with gross texture properties of the sands. The differences in particle size distribution for the sediments suggested that straining did not play a role in removal efficiency. First-order colloid attachment rate coefficients followed lognormal distribution functions. The coefficients also appeared to be unrelated to the differences in particle size distributions of the sediments, bacterial counts, or levels of total carbon or total organic carbon. Using Monte Carlo analyses, the lowest observed 5th percentile was 8.0 × 10 −6 min −1 and the highest observed 95th percentile was 1.6 × 10 −3. Total log 10 removals ranged from 23 to 200 m −1. These results have application for screening level colloid filtration modeling of riverbank filtration in these systems.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>20347113</pmid><doi>10.1016/j.watres.2010.02.001</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-1354
ispartof Water research (Oxford), 2010-05, Vol.44 (9), p.2725-2734
issn 0043-1354
1879-2448
language eng
recordid cdi_proquest_miscellaneous_746161766
source MEDLINE; Elsevier ScienceDirect Journals
subjects alluvium
Applied sciences
Attachment
Bacteria
Carbon
Colloid filtration theory
Colloid straining
Colloids
Cryptosporidium - isolation & purification
Cryptosporidium parvum
drinking water
environmental models
Exact sciences and technology
Filtration
Freshwater
Geologic Sediments - parasitology
Mathematical models
microbial contamination
Monte Carlo method
oocysts
organic matter
Other industrial wastes. Sewage sludge
Particle Size
particle size distribution
Pollution
riparian soils
Riverbank filtration
Rivers - parasitology
sandy soils
sediment contamination
Sediments
Silicon Dioxide
Texture
Transport modeling
Wastes
Water Purification - methods
water quality
Water Supply - standards
water treatment
Water treatment and pollution
title Removal efficiencies and attachment coefficients for Cryptosporidium in sandy alluvial riverbank sediment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A38%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Removal%20efficiencies%20and%20attachment%20coefficients%20for%20Cryptosporidium%20in%20sandy%20alluvial%20riverbank%20sediment&rft.jtitle=Water%20research%20(Oxford)&rft.au=Faulkner,%20Barton%20R.&rft.date=2010-05-01&rft.volume=44&rft.issue=9&rft.spage=2725&rft.epage=2734&rft.pages=2725-2734&rft.issn=0043-1354&rft.eissn=1879-2448&rft.coden=WATRAG&rft_id=info:doi/10.1016/j.watres.2010.02.001&rft_dat=%3Cproquest_cross%3E1730056005%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1730056005&rft_id=info:pmid/20347113&rft_els_id=S0043135410000783&rfr_iscdi=true