Prediction of Acute in vivo Toxicity of Some Amine and Amide Drugs to Rats by Multiple Linear Regression, Partial Least Squares and an Artificial Neural Network

The oral acute in vivo toxicity of 32 amine and amide drugs was related to their structural-dependent properties. Genetic algorithm-partial least-squares and stepwise variable selection was applied to select of meaningful descriptors. Multiple linear regression (MLR), artificial neural network (ANN)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical Sciences 2007, Vol.23(9), pp.1091-1095
Hauptverfasser: MAHANI, Mohamad Khayatzadeh, CHALOOSI, Marzieh, MARAGHEH, Mohamad Ghanadi, KHANCHI, Ali Reza, AFZALI, Daryoush
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1095
container_issue 9
container_start_page 1091
container_title Analytical Sciences
container_volume 23
creator MAHANI, Mohamad Khayatzadeh
CHALOOSI, Marzieh
MARAGHEH, Mohamad Ghanadi
KHANCHI, Ali Reza
AFZALI, Daryoush
description The oral acute in vivo toxicity of 32 amine and amide drugs was related to their structural-dependent properties. Genetic algorithm-partial least-squares and stepwise variable selection was applied to select of meaningful descriptors. Multiple linear regression (MLR), artificial neural network (ANN) and partial least square (PLS) models were created with selected descriptors. The predictive ability of all three models was evaluated and compared on a set of five drugs, which were not used in modeling steps. Average errors of 0.168, 0.169 and 0.259 were obtained for MLR, ANN and PLS, respectively.
doi_str_mv 10.2116/analsci.23.1091
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746156590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118108361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c632t-46f45c589393d80e1f275b49638706fb82c82b38ea98f6b270743387a48610c93</originalsourceid><addsrcrecordid>eNpdkUtv1DAUhS0EokNhzQ5ZYsGGTP2K4yxHLS9pgKota8txbgYPSTy1ncL8G34qTmdUEBtfy-fz8b0-CL2kZMkolWdmNH20bsn4kpKaPkILyoUqGBPyMVrkE1JILsgJehbjlhDKFGNP0QmtVKVKJRbo92WA1tnk_Ih9h1d2SoDdiO_cncc3_pezLu1n5doPgFeDGwGbsZ13LeCLMG0iTh5fmRRxs8efpz65XQ94nUET8BVsAsSY3d_iSxOSMz1eg4kJX99OJkv3ZmbEq6x1-bGsf4Ep3Jf004cfz9GTLs8IL471FH17_-7m_GOx_vrh0_lqXVjJWSqE7ERpS1XzmreKAO1YVTaillxVRHaNYlaxhiswtepkwypSCZ41I5SkxNb8FL05-O6Cv50gJj24aKHvzQh-iroSkpayrEkmX_9Hbv0U5iA0FUKVZe6BZersQNngYwzQ6V1wgwl7TYmes9PH7DTjes4u33h19J2aAdq__DGsDFwcgG1MZgMPwPyvtod_DevDMvs-yPa7CRpG_gfeOa6c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448559392</pqid></control><display><type>article</type><title>Prediction of Acute in vivo Toxicity of Some Amine and Amide Drugs to Rats by Multiple Linear Regression, Partial Least Squares and an Artificial Neural Network</title><source>J-STAGE Free</source><source>MEDLINE</source><source>SpringerLink Journals</source><source>Open Access Titles of Japan</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>MAHANI, Mohamad Khayatzadeh ; CHALOOSI, Marzieh ; MARAGHEH, Mohamad Ghanadi ; KHANCHI, Ali Reza ; AFZALI, Daryoush</creator><creatorcontrib>MAHANI, Mohamad Khayatzadeh ; CHALOOSI, Marzieh ; MARAGHEH, Mohamad Ghanadi ; KHANCHI, Ali Reza ; AFZALI, Daryoush</creatorcontrib><description>The oral acute in vivo toxicity of 32 amine and amide drugs was related to their structural-dependent properties. Genetic algorithm-partial least-squares and stepwise variable selection was applied to select of meaningful descriptors. Multiple linear regression (MLR), artificial neural network (ANN) and partial least square (PLS) models were created with selected descriptors. The predictive ability of all three models was evaluated and compared on a set of five drugs, which were not used in modeling steps. Average errors of 0.168, 0.169 and 0.259 were obtained for MLR, ANN and PLS, respectively.</description><identifier>ISSN: 0910-6340</identifier><identifier>EISSN: 1348-2246</identifier><identifier>DOI: 10.2116/analsci.23.1091</identifier><identifier>PMID: 17878584</identifier><language>eng</language><publisher>Japan: The Japan Society for Analytical Chemistry</publisher><subject>Acute Disease ; Amides - toxicity ; Amines - toxicity ; Animals ; Linear Models ; Neural Networks (Computer) ; Rats ; Software</subject><ispartof>Analytical Sciences, 2007, Vol.23(9), pp.1091-1095</ispartof><rights>2007 by The Japan Society for Analytical Chemistry</rights><rights>Copyright Japan Science and Technology Agency 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c632t-46f45c589393d80e1f275b49638706fb82c82b38ea98f6b270743387a48610c93</citedby><cites>FETCH-LOGICAL-c632t-46f45c589393d80e1f275b49638706fb82c82b38ea98f6b270743387a48610c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17878584$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MAHANI, Mohamad Khayatzadeh</creatorcontrib><creatorcontrib>CHALOOSI, Marzieh</creatorcontrib><creatorcontrib>MARAGHEH, Mohamad Ghanadi</creatorcontrib><creatorcontrib>KHANCHI, Ali Reza</creatorcontrib><creatorcontrib>AFZALI, Daryoush</creatorcontrib><title>Prediction of Acute in vivo Toxicity of Some Amine and Amide Drugs to Rats by Multiple Linear Regression, Partial Least Squares and an Artificial Neural Network</title><title>Analytical Sciences</title><addtitle>Anal Sci</addtitle><description>The oral acute in vivo toxicity of 32 amine and amide drugs was related to their structural-dependent properties. Genetic algorithm-partial least-squares and stepwise variable selection was applied to select of meaningful descriptors. Multiple linear regression (MLR), artificial neural network (ANN) and partial least square (PLS) models were created with selected descriptors. The predictive ability of all three models was evaluated and compared on a set of five drugs, which were not used in modeling steps. Average errors of 0.168, 0.169 and 0.259 were obtained for MLR, ANN and PLS, respectively.</description><subject>Acute Disease</subject><subject>Amides - toxicity</subject><subject>Amines - toxicity</subject><subject>Animals</subject><subject>Linear Models</subject><subject>Neural Networks (Computer)</subject><subject>Rats</subject><subject>Software</subject><issn>0910-6340</issn><issn>1348-2246</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtv1DAUhS0EokNhzQ5ZYsGGTP2K4yxHLS9pgKota8txbgYPSTy1ncL8G34qTmdUEBtfy-fz8b0-CL2kZMkolWdmNH20bsn4kpKaPkILyoUqGBPyMVrkE1JILsgJehbjlhDKFGNP0QmtVKVKJRbo92WA1tnk_Ih9h1d2SoDdiO_cncc3_pezLu1n5doPgFeDGwGbsZ13LeCLMG0iTh5fmRRxs8efpz65XQ94nUET8BVsAsSY3d_iSxOSMz1eg4kJX99OJkv3ZmbEq6x1-bGsf4Ep3Jf004cfz9GTLs8IL471FH17_-7m_GOx_vrh0_lqXVjJWSqE7ERpS1XzmreKAO1YVTaillxVRHaNYlaxhiswtepkwypSCZ41I5SkxNb8FL05-O6Cv50gJj24aKHvzQh-iroSkpayrEkmX_9Hbv0U5iA0FUKVZe6BZersQNngYwzQ6V1wgwl7TYmes9PH7DTjes4u33h19J2aAdq__DGsDFwcgG1MZgMPwPyvtod_DevDMvs-yPa7CRpG_gfeOa6c</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>MAHANI, Mohamad Khayatzadeh</creator><creator>CHALOOSI, Marzieh</creator><creator>MARAGHEH, Mohamad Ghanadi</creator><creator>KHANCHI, Ali Reza</creator><creator>AFZALI, Daryoush</creator><general>The Japan Society for Analytical Chemistry</general><general>Japan Science and Technology Agency</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>L7M</scope><scope>P64</scope><scope>7U7</scope><scope>C1K</scope></search><sort><creationdate>2007</creationdate><title>Prediction of Acute in vivo Toxicity of Some Amine and Amide Drugs to Rats by Multiple Linear Regression, Partial Least Squares and an Artificial Neural Network</title><author>MAHANI, Mohamad Khayatzadeh ; CHALOOSI, Marzieh ; MARAGHEH, Mohamad Ghanadi ; KHANCHI, Ali Reza ; AFZALI, Daryoush</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c632t-46f45c589393d80e1f275b49638706fb82c82b38ea98f6b270743387a48610c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Acute Disease</topic><topic>Amides - toxicity</topic><topic>Amines - toxicity</topic><topic>Animals</topic><topic>Linear Models</topic><topic>Neural Networks (Computer)</topic><topic>Rats</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MAHANI, Mohamad Khayatzadeh</creatorcontrib><creatorcontrib>CHALOOSI, Marzieh</creatorcontrib><creatorcontrib>MARAGHEH, Mohamad Ghanadi</creatorcontrib><creatorcontrib>KHANCHI, Ali Reza</creatorcontrib><creatorcontrib>AFZALI, Daryoush</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Analytical Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MAHANI, Mohamad Khayatzadeh</au><au>CHALOOSI, Marzieh</au><au>MARAGHEH, Mohamad Ghanadi</au><au>KHANCHI, Ali Reza</au><au>AFZALI, Daryoush</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Acute in vivo Toxicity of Some Amine and Amide Drugs to Rats by Multiple Linear Regression, Partial Least Squares and an Artificial Neural Network</atitle><jtitle>Analytical Sciences</jtitle><addtitle>Anal Sci</addtitle><date>2007</date><risdate>2007</risdate><volume>23</volume><issue>9</issue><spage>1091</spage><epage>1095</epage><pages>1091-1095</pages><issn>0910-6340</issn><eissn>1348-2246</eissn><abstract>The oral acute in vivo toxicity of 32 amine and amide drugs was related to their structural-dependent properties. Genetic algorithm-partial least-squares and stepwise variable selection was applied to select of meaningful descriptors. Multiple linear regression (MLR), artificial neural network (ANN) and partial least square (PLS) models were created with selected descriptors. The predictive ability of all three models was evaluated and compared on a set of five drugs, which were not used in modeling steps. Average errors of 0.168, 0.169 and 0.259 were obtained for MLR, ANN and PLS, respectively.</abstract><cop>Japan</cop><pub>The Japan Society for Analytical Chemistry</pub><pmid>17878584</pmid><doi>10.2116/analsci.23.1091</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0910-6340
ispartof Analytical Sciences, 2007, Vol.23(9), pp.1091-1095
issn 0910-6340
1348-2246
language eng
recordid cdi_proquest_miscellaneous_746156590
source J-STAGE Free; MEDLINE; SpringerLink Journals; Open Access Titles of Japan; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Acute Disease
Amides - toxicity
Amines - toxicity
Animals
Linear Models
Neural Networks (Computer)
Rats
Software
title Prediction of Acute in vivo Toxicity of Some Amine and Amide Drugs to Rats by Multiple Linear Regression, Partial Least Squares and an Artificial Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A01%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Acute%20in%20vivo%20Toxicity%20of%20Some%20Amine%20and%20Amide%20Drugs%20to%20Rats%20by%20Multiple%20Linear%20Regression,%20Partial%20Least%20Squares%20and%20an%20Artificial%20Neural%20Network&rft.jtitle=Analytical%20Sciences&rft.au=MAHANI,%20Mohamad%20Khayatzadeh&rft.date=2007&rft.volume=23&rft.issue=9&rft.spage=1091&rft.epage=1095&rft.pages=1091-1095&rft.issn=0910-6340&rft.eissn=1348-2246&rft_id=info:doi/10.2116/analsci.23.1091&rft_dat=%3Cproquest_cross%3E3118108361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1448559392&rft_id=info:pmid/17878584&rfr_iscdi=true