Prediction of Acute in vivo Toxicity of Some Amine and Amide Drugs to Rats by Multiple Linear Regression, Partial Least Squares and an Artificial Neural Network
The oral acute in vivo toxicity of 32 amine and amide drugs was related to their structural-dependent properties. Genetic algorithm-partial least-squares and stepwise variable selection was applied to select of meaningful descriptors. Multiple linear regression (MLR), artificial neural network (ANN)...
Gespeichert in:
Veröffentlicht in: | Analytical Sciences 2007, Vol.23(9), pp.1091-1095 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1095 |
---|---|
container_issue | 9 |
container_start_page | 1091 |
container_title | Analytical Sciences |
container_volume | 23 |
creator | MAHANI, Mohamad Khayatzadeh CHALOOSI, Marzieh MARAGHEH, Mohamad Ghanadi KHANCHI, Ali Reza AFZALI, Daryoush |
description | The oral acute in vivo toxicity of 32 amine and amide drugs was related to their structural-dependent properties. Genetic algorithm-partial least-squares and stepwise variable selection was applied to select of meaningful descriptors. Multiple linear regression (MLR), artificial neural network (ANN) and partial least square (PLS) models were created with selected descriptors. The predictive ability of all three models was evaluated and compared on a set of five drugs, which were not used in modeling steps. Average errors of 0.168, 0.169 and 0.259 were obtained for MLR, ANN and PLS, respectively. |
doi_str_mv | 10.2116/analsci.23.1091 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746156590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118108361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c632t-46f45c589393d80e1f275b49638706fb82c82b38ea98f6b270743387a48610c93</originalsourceid><addsrcrecordid>eNpdkUtv1DAUhS0EokNhzQ5ZYsGGTP2K4yxHLS9pgKota8txbgYPSTy1ncL8G34qTmdUEBtfy-fz8b0-CL2kZMkolWdmNH20bsn4kpKaPkILyoUqGBPyMVrkE1JILsgJehbjlhDKFGNP0QmtVKVKJRbo92WA1tnk_Ih9h1d2SoDdiO_cncc3_pezLu1n5doPgFeDGwGbsZ13LeCLMG0iTh5fmRRxs8efpz65XQ94nUET8BVsAsSY3d_iSxOSMz1eg4kJX99OJkv3ZmbEq6x1-bGsf4Ep3Jf004cfz9GTLs8IL471FH17_-7m_GOx_vrh0_lqXVjJWSqE7ERpS1XzmreKAO1YVTaillxVRHaNYlaxhiswtepkwypSCZ41I5SkxNb8FL05-O6Cv50gJj24aKHvzQh-iroSkpayrEkmX_9Hbv0U5iA0FUKVZe6BZersQNngYwzQ6V1wgwl7TYmes9PH7DTjes4u33h19J2aAdq__DGsDFwcgG1MZgMPwPyvtod_DevDMvs-yPa7CRpG_gfeOa6c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448559392</pqid></control><display><type>article</type><title>Prediction of Acute in vivo Toxicity of Some Amine and Amide Drugs to Rats by Multiple Linear Regression, Partial Least Squares and an Artificial Neural Network</title><source>J-STAGE Free</source><source>MEDLINE</source><source>SpringerLink Journals</source><source>Open Access Titles of Japan</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>MAHANI, Mohamad Khayatzadeh ; CHALOOSI, Marzieh ; MARAGHEH, Mohamad Ghanadi ; KHANCHI, Ali Reza ; AFZALI, Daryoush</creator><creatorcontrib>MAHANI, Mohamad Khayatzadeh ; CHALOOSI, Marzieh ; MARAGHEH, Mohamad Ghanadi ; KHANCHI, Ali Reza ; AFZALI, Daryoush</creatorcontrib><description>The oral acute in vivo toxicity of 32 amine and amide drugs was related to their structural-dependent properties. Genetic algorithm-partial least-squares and stepwise variable selection was applied to select of meaningful descriptors. Multiple linear regression (MLR), artificial neural network (ANN) and partial least square (PLS) models were created with selected descriptors. The predictive ability of all three models was evaluated and compared on a set of five drugs, which were not used in modeling steps. Average errors of 0.168, 0.169 and 0.259 were obtained for MLR, ANN and PLS, respectively.</description><identifier>ISSN: 0910-6340</identifier><identifier>EISSN: 1348-2246</identifier><identifier>DOI: 10.2116/analsci.23.1091</identifier><identifier>PMID: 17878584</identifier><language>eng</language><publisher>Japan: The Japan Society for Analytical Chemistry</publisher><subject>Acute Disease ; Amides - toxicity ; Amines - toxicity ; Animals ; Linear Models ; Neural Networks (Computer) ; Rats ; Software</subject><ispartof>Analytical Sciences, 2007, Vol.23(9), pp.1091-1095</ispartof><rights>2007 by The Japan Society for Analytical Chemistry</rights><rights>Copyright Japan Science and Technology Agency 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c632t-46f45c589393d80e1f275b49638706fb82c82b38ea98f6b270743387a48610c93</citedby><cites>FETCH-LOGICAL-c632t-46f45c589393d80e1f275b49638706fb82c82b38ea98f6b270743387a48610c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17878584$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MAHANI, Mohamad Khayatzadeh</creatorcontrib><creatorcontrib>CHALOOSI, Marzieh</creatorcontrib><creatorcontrib>MARAGHEH, Mohamad Ghanadi</creatorcontrib><creatorcontrib>KHANCHI, Ali Reza</creatorcontrib><creatorcontrib>AFZALI, Daryoush</creatorcontrib><title>Prediction of Acute in vivo Toxicity of Some Amine and Amide Drugs to Rats by Multiple Linear Regression, Partial Least Squares and an Artificial Neural Network</title><title>Analytical Sciences</title><addtitle>Anal Sci</addtitle><description>The oral acute in vivo toxicity of 32 amine and amide drugs was related to their structural-dependent properties. Genetic algorithm-partial least-squares and stepwise variable selection was applied to select of meaningful descriptors. Multiple linear regression (MLR), artificial neural network (ANN) and partial least square (PLS) models were created with selected descriptors. The predictive ability of all three models was evaluated and compared on a set of five drugs, which were not used in modeling steps. Average errors of 0.168, 0.169 and 0.259 were obtained for MLR, ANN and PLS, respectively.</description><subject>Acute Disease</subject><subject>Amides - toxicity</subject><subject>Amines - toxicity</subject><subject>Animals</subject><subject>Linear Models</subject><subject>Neural Networks (Computer)</subject><subject>Rats</subject><subject>Software</subject><issn>0910-6340</issn><issn>1348-2246</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtv1DAUhS0EokNhzQ5ZYsGGTP2K4yxHLS9pgKota8txbgYPSTy1ncL8G34qTmdUEBtfy-fz8b0-CL2kZMkolWdmNH20bsn4kpKaPkILyoUqGBPyMVrkE1JILsgJehbjlhDKFGNP0QmtVKVKJRbo92WA1tnk_Ih9h1d2SoDdiO_cncc3_pezLu1n5doPgFeDGwGbsZ13LeCLMG0iTh5fmRRxs8efpz65XQ94nUET8BVsAsSY3d_iSxOSMz1eg4kJX99OJkv3ZmbEq6x1-bGsf4Ep3Jf004cfz9GTLs8IL471FH17_-7m_GOx_vrh0_lqXVjJWSqE7ERpS1XzmreKAO1YVTaillxVRHaNYlaxhiswtepkwypSCZ41I5SkxNb8FL05-O6Cv50gJj24aKHvzQh-iroSkpayrEkmX_9Hbv0U5iA0FUKVZe6BZersQNngYwzQ6V1wgwl7TYmes9PH7DTjes4u33h19J2aAdq__DGsDFwcgG1MZgMPwPyvtod_DevDMvs-yPa7CRpG_gfeOa6c</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>MAHANI, Mohamad Khayatzadeh</creator><creator>CHALOOSI, Marzieh</creator><creator>MARAGHEH, Mohamad Ghanadi</creator><creator>KHANCHI, Ali Reza</creator><creator>AFZALI, Daryoush</creator><general>The Japan Society for Analytical Chemistry</general><general>Japan Science and Technology Agency</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>L7M</scope><scope>P64</scope><scope>7U7</scope><scope>C1K</scope></search><sort><creationdate>2007</creationdate><title>Prediction of Acute in vivo Toxicity of Some Amine and Amide Drugs to Rats by Multiple Linear Regression, Partial Least Squares and an Artificial Neural Network</title><author>MAHANI, Mohamad Khayatzadeh ; CHALOOSI, Marzieh ; MARAGHEH, Mohamad Ghanadi ; KHANCHI, Ali Reza ; AFZALI, Daryoush</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c632t-46f45c589393d80e1f275b49638706fb82c82b38ea98f6b270743387a48610c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Acute Disease</topic><topic>Amides - toxicity</topic><topic>Amines - toxicity</topic><topic>Animals</topic><topic>Linear Models</topic><topic>Neural Networks (Computer)</topic><topic>Rats</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MAHANI, Mohamad Khayatzadeh</creatorcontrib><creatorcontrib>CHALOOSI, Marzieh</creatorcontrib><creatorcontrib>MARAGHEH, Mohamad Ghanadi</creatorcontrib><creatorcontrib>KHANCHI, Ali Reza</creatorcontrib><creatorcontrib>AFZALI, Daryoush</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Analytical Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MAHANI, Mohamad Khayatzadeh</au><au>CHALOOSI, Marzieh</au><au>MARAGHEH, Mohamad Ghanadi</au><au>KHANCHI, Ali Reza</au><au>AFZALI, Daryoush</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Acute in vivo Toxicity of Some Amine and Amide Drugs to Rats by Multiple Linear Regression, Partial Least Squares and an Artificial Neural Network</atitle><jtitle>Analytical Sciences</jtitle><addtitle>Anal Sci</addtitle><date>2007</date><risdate>2007</risdate><volume>23</volume><issue>9</issue><spage>1091</spage><epage>1095</epage><pages>1091-1095</pages><issn>0910-6340</issn><eissn>1348-2246</eissn><abstract>The oral acute in vivo toxicity of 32 amine and amide drugs was related to their structural-dependent properties. Genetic algorithm-partial least-squares and stepwise variable selection was applied to select of meaningful descriptors. Multiple linear regression (MLR), artificial neural network (ANN) and partial least square (PLS) models were created with selected descriptors. The predictive ability of all three models was evaluated and compared on a set of five drugs, which were not used in modeling steps. Average errors of 0.168, 0.169 and 0.259 were obtained for MLR, ANN and PLS, respectively.</abstract><cop>Japan</cop><pub>The Japan Society for Analytical Chemistry</pub><pmid>17878584</pmid><doi>10.2116/analsci.23.1091</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0910-6340 |
ispartof | Analytical Sciences, 2007, Vol.23(9), pp.1091-1095 |
issn | 0910-6340 1348-2246 |
language | eng |
recordid | cdi_proquest_miscellaneous_746156590 |
source | J-STAGE Free; MEDLINE; SpringerLink Journals; Open Access Titles of Japan; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Acute Disease Amides - toxicity Amines - toxicity Animals Linear Models Neural Networks (Computer) Rats Software |
title | Prediction of Acute in vivo Toxicity of Some Amine and Amide Drugs to Rats by Multiple Linear Regression, Partial Least Squares and an Artificial Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A01%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Acute%20in%20vivo%20Toxicity%20of%20Some%20Amine%20and%20Amide%20Drugs%20to%20Rats%20by%20Multiple%20Linear%20Regression,%20Partial%20Least%20Squares%20and%20an%20Artificial%20Neural%20Network&rft.jtitle=Analytical%20Sciences&rft.au=MAHANI,%20Mohamad%20Khayatzadeh&rft.date=2007&rft.volume=23&rft.issue=9&rft.spage=1091&rft.epage=1095&rft.pages=1091-1095&rft.issn=0910-6340&rft.eissn=1348-2246&rft_id=info:doi/10.2116/analsci.23.1091&rft_dat=%3Cproquest_cross%3E3118108361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1448559392&rft_id=info:pmid/17878584&rfr_iscdi=true |