Modeling of the catalytic removal of CO and NO in dry combustion gases

Catalytic removal of pollutants in dry combustion gases in a planar stagnation‐point flow over a platinum foil is studied using both numerical and analytical tools. The governing equations have been numerically integrated with the Newton technique, and the response curve has been obtained as functio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2010-03, Vol.56 (3), p.801-809
Hauptverfasser: Treviño, C., Prince, J. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 809
container_issue 3
container_start_page 801
container_title AIChE journal
container_volume 56
creator Treviño, C.
Prince, J. C.
description Catalytic removal of pollutants in dry combustion gases in a planar stagnation‐point flow over a platinum foil is studied using both numerical and analytical tools. The governing equations have been numerically integrated with the Newton technique, and the response curve has been obtained as functions of temperature and the mixture concentrations. Using the appropriate stoichiometry, the additional oxygen needed to reduce the NO and to achieve complete oxidation of CO has been obtained. The asymptotic analysis leads to an algebraic equation for the surface coverage of empty sites as a function of two nondimensional parameters: the mass transfer number, relating the residence time to the chemical time (sort of Damköhler number), and a parameter, which relates the desorption rate to the adsorption rate of carbon monoxide and depends strongly on temperature. Critical conditions of ignition (light‐off) and extinction are identified and closed form solutions are obtained for these phenomena. © 2009 American Institute of Chemical Engineers AIChE J, 2010
doi_str_mv 10.1002/aic.11988
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746153470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743687678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3618-3fe065589c9884a6ba5dfa09b4912f8987f7881f5ccc0b64c6ed10eb425749473</originalsourceid><addsrcrecordid>eNqNkE1PAjEURRujiYgu_AfdGONioJ3p1ywJCpLwkRgMy6bTabE6zGA7qPx7B0F2Jq5e-nruycsF4BqjDkYo7iqnOxinQpyAFqaERzRF9BS0EEI4ahb4HFyE8Nq8Yi7iFhhMqtwUrlzCysL6xUCtalVsa6ehN6vqQxW7j_4MqjKH0xl0Jcz9FupqlW1C7aoSLlUw4RKcWVUEc3WYbfA8eJj3H6PxbDjq98aRThgWUWINYpSKVDcXEsUyRXOrUJqRFMdWpIJbLgS2VGuNMkY0MzlGJiMx5SQlPGmD27137av3jQm1XLmgTVGo0lSbIDlhmCaEo3-QCROccdGQd3tS-yoEb6xce7dSfisxkrtSZVOq_Cm1YW8OVhW0KqxXpXbhGIhj0nhJ0nDdPffpCrP9Wyh7o_6vOdonXKjN1zGh_JtkPOFULqZD-XQ_mMzjwUIOk28yHJJd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743687678</pqid></control><display><type>article</type><title>Modeling of the catalytic removal of CO and NO in dry combustion gases</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Treviño, C. ; Prince, J. C.</creator><creatorcontrib>Treviño, C. ; Prince, J. C.</creatorcontrib><description>Catalytic removal of pollutants in dry combustion gases in a planar stagnation‐point flow over a platinum foil is studied using both numerical and analytical tools. The governing equations have been numerically integrated with the Newton technique, and the response curve has been obtained as functions of temperature and the mixture concentrations. Using the appropriate stoichiometry, the additional oxygen needed to reduce the NO and to achieve complete oxidation of CO has been obtained. The asymptotic analysis leads to an algebraic equation for the surface coverage of empty sites as a function of two nondimensional parameters: the mass transfer number, relating the residence time to the chemical time (sort of Damköhler number), and a parameter, which relates the desorption rate to the adsorption rate of carbon monoxide and depends strongly on temperature. Critical conditions of ignition (light‐off) and extinction are identified and closed form solutions are obtained for these phenomena. © 2009 American Institute of Chemical Engineers AIChE J, 2010</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.11988</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adsorption ; Applied sciences ; Catalysis ; Catalytic reactions ; Chemical engineering ; Chemistry ; computational chemistry (at solid surfaces) ; Exact sciences and technology ; General and physical chemistry ; Heat and mass transfer. Packings, plates ; process ; reactor analysis ; Reactors ; simulation ; surface chemistry/physics ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>AIChE journal, 2010-03, Vol.56 (3), p.801-809</ispartof><rights>Copyright © 2009 American Institute of Chemical Engineers (AIChE)</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3618-3fe065589c9884a6ba5dfa09b4912f8987f7881f5ccc0b64c6ed10eb425749473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.11988$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.11988$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22474343$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Treviño, C.</creatorcontrib><creatorcontrib>Prince, J. C.</creatorcontrib><title>Modeling of the catalytic removal of CO and NO in dry combustion gases</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Catalytic removal of pollutants in dry combustion gases in a planar stagnation‐point flow over a platinum foil is studied using both numerical and analytical tools. The governing equations have been numerically integrated with the Newton technique, and the response curve has been obtained as functions of temperature and the mixture concentrations. Using the appropriate stoichiometry, the additional oxygen needed to reduce the NO and to achieve complete oxidation of CO has been obtained. The asymptotic analysis leads to an algebraic equation for the surface coverage of empty sites as a function of two nondimensional parameters: the mass transfer number, relating the residence time to the chemical time (sort of Damköhler number), and a parameter, which relates the desorption rate to the adsorption rate of carbon monoxide and depends strongly on temperature. Critical conditions of ignition (light‐off) and extinction are identified and closed form solutions are obtained for these phenomena. © 2009 American Institute of Chemical Engineers AIChE J, 2010</description><subject>Adsorption</subject><subject>Applied sciences</subject><subject>Catalysis</subject><subject>Catalytic reactions</subject><subject>Chemical engineering</subject><subject>Chemistry</subject><subject>computational chemistry (at solid surfaces)</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Heat and mass transfer. Packings, plates</subject><subject>process</subject><subject>reactor analysis</subject><subject>Reactors</subject><subject>simulation</subject><subject>surface chemistry/physics</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PAjEURRujiYgu_AfdGONioJ3p1ywJCpLwkRgMy6bTabE6zGA7qPx7B0F2Jq5e-nruycsF4BqjDkYo7iqnOxinQpyAFqaERzRF9BS0EEI4ahb4HFyE8Nq8Yi7iFhhMqtwUrlzCysL6xUCtalVsa6ehN6vqQxW7j_4MqjKH0xl0Jcz9FupqlW1C7aoSLlUw4RKcWVUEc3WYbfA8eJj3H6PxbDjq98aRThgWUWINYpSKVDcXEsUyRXOrUJqRFMdWpIJbLgS2VGuNMkY0MzlGJiMx5SQlPGmD27137av3jQm1XLmgTVGo0lSbIDlhmCaEo3-QCROccdGQd3tS-yoEb6xce7dSfisxkrtSZVOq_Cm1YW8OVhW0KqxXpXbhGIhj0nhJ0nDdPffpCrP9Wyh7o_6vOdonXKjN1zGh_JtkPOFULqZD-XQ_mMzjwUIOk28yHJJd</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Treviño, C.</creator><creator>Prince, J. C.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7ST</scope><scope>7TV</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>201003</creationdate><title>Modeling of the catalytic removal of CO and NO in dry combustion gases</title><author>Treviño, C. ; Prince, J. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3618-3fe065589c9884a6ba5dfa09b4912f8987f7881f5ccc0b64c6ed10eb425749473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adsorption</topic><topic>Applied sciences</topic><topic>Catalysis</topic><topic>Catalytic reactions</topic><topic>Chemical engineering</topic><topic>Chemistry</topic><topic>computational chemistry (at solid surfaces)</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Heat and mass transfer. Packings, plates</topic><topic>process</topic><topic>reactor analysis</topic><topic>Reactors</topic><topic>simulation</topic><topic>surface chemistry/physics</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Treviño, C.</creatorcontrib><creatorcontrib>Prince, J. C.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Treviño, C.</au><au>Prince, J. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of the catalytic removal of CO and NO in dry combustion gases</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2010-03</date><risdate>2010</risdate><volume>56</volume><issue>3</issue><spage>801</spage><epage>809</epage><pages>801-809</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>Catalytic removal of pollutants in dry combustion gases in a planar stagnation‐point flow over a platinum foil is studied using both numerical and analytical tools. The governing equations have been numerically integrated with the Newton technique, and the response curve has been obtained as functions of temperature and the mixture concentrations. Using the appropriate stoichiometry, the additional oxygen needed to reduce the NO and to achieve complete oxidation of CO has been obtained. The asymptotic analysis leads to an algebraic equation for the surface coverage of empty sites as a function of two nondimensional parameters: the mass transfer number, relating the residence time to the chemical time (sort of Damköhler number), and a parameter, which relates the desorption rate to the adsorption rate of carbon monoxide and depends strongly on temperature. Critical conditions of ignition (light‐off) and extinction are identified and closed form solutions are obtained for these phenomena. © 2009 American Institute of Chemical Engineers AIChE J, 2010</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.11988</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2010-03, Vol.56 (3), p.801-809
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_miscellaneous_746153470
source Wiley Online Library Journals Frontfile Complete
subjects Adsorption
Applied sciences
Catalysis
Catalytic reactions
Chemical engineering
Chemistry
computational chemistry (at solid surfaces)
Exact sciences and technology
General and physical chemistry
Heat and mass transfer. Packings, plates
process
reactor analysis
Reactors
simulation
surface chemistry/physics
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title Modeling of the catalytic removal of CO and NO in dry combustion gases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A40%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20the%20catalytic%20removal%20of%20CO%20and%20NO%20in%20dry%20combustion%20gases&rft.jtitle=AIChE%20journal&rft.au=Trevi%C3%B1o,%20C.&rft.date=2010-03&rft.volume=56&rft.issue=3&rft.spage=801&rft.epage=809&rft.pages=801-809&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.11988&rft_dat=%3Cproquest_cross%3E743687678%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743687678&rft_id=info:pmid/&rfr_iscdi=true