Potential predictability of an Iberian river flow based on its relationship with previous winter global SST

We examine the potential predictability of an important Iberian river (Douro) based on the coupling of a time series approach (ARMA) and previous seasonal sea surface temperature (SST) anomalies. A comprehensive search for predictors has identified only two key regions where spring streamflow anomal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrology (Amsterdam) 2010-05, Vol.385 (1), p.143-149
Hauptverfasser: Gámiz-Fortis, S.R., Esteban-Parra, M.J., Trigo, R.M., Castro-Díez, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 149
container_issue 1
container_start_page 143
container_title Journal of hydrology (Amsterdam)
container_volume 385
creator Gámiz-Fortis, S.R.
Esteban-Parra, M.J.
Trigo, R.M.
Castro-Díez, Y.
description We examine the potential predictability of an important Iberian river (Douro) based on the coupling of a time series approach (ARMA) and previous seasonal sea surface temperature (SST) anomalies. A comprehensive search for predictors has identified only two key regions where spring streamflow anomalies are stably correlated with previous winter SST anomalies during the whole period under study (1956–2006); (1) central North Atlantic Ocean and (2) south-western Atlantic. A modelling scheme (the SST_model), based on linear regression, is developed and applied to simulate streamflow anomalies from these key SST regions. An additional study carried out over the residual time series (residual = flow − SST_model) shows three significant quasi-oscillatory modes with periods around 5, 3 and 2.4 years. Based on this information an ARMA(4,3) model was fitted to the residual. The combined [SST_model + ARMA(4,3)] model considerably improves the skill of the model compared to the climatology or persistence, explaining 76% of the total variance for spring Douro streamflow series. We conclude that the predictability of the spring Douro streamflow can be divided in two parts: the seasonal predictability associated with the previous winter Atlantic SST and the linear interannual predictability, which is considerable lower and shows some kind of association with El Niño.
doi_str_mv 10.1016/j.jhydrol.2010.02.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746150769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022169410000806</els_id><sourcerecordid>1786210740</sourcerecordid><originalsourceid>FETCH-LOGICAL-a451t-3926852801139e4f40a2b4f6a411764f4e02b326a562295a997fcf4e6a42375f3</originalsourceid><addsrcrecordid>eNqFkU9rGzEQxUVooa6bj1CiS2kv6-rfSrunUkKSBgINODmL2bUUy1VWrqQ4-Nt3jE2PrS6PGX7zZtAj5CNnC864_rpZbNb7VU5xIRj2mFignJEZ70zfCMPMGzJjTIiG6169I-9L2TB8UqoZ-XWfqptqgEi32a3CWGEIMdQ9TZ7CRG8HlwNqDjuXqY_plQ5Q3IqmiYZaaHYRakhTWYctfQ11fbDZhfRSsJoqzjzFNKD7cvnwgbz1EIs7P-mcPF5fPVz-aO5-3txefr9rQLW8NrIXumtFxziXvVNeMRCD8hoU50Zj7ZgYpNDQaiH6Fvre-BG7CAhpWi_n5PPRd5vT7xdXqn0OZXQxwuTwMGuU5i0zukfyyz9JbjotODOKIdoe0TGnUrLzdpvDM-S95cweYrAbe4rBHmKwTFgUnPt0WgFlhOgzTGMof4cF5iM0ZjEnF0fOQ7LwlJF5XKKRZLyT_IDMybcj4fDvdsFlW8bgphFTy26sdpXCf275A95uqSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786210740</pqid></control><display><type>article</type><title>Potential predictability of an Iberian river flow based on its relationship with previous winter global SST</title><source>Access via ScienceDirect (Elsevier)</source><creator>Gámiz-Fortis, S.R. ; Esteban-Parra, M.J. ; Trigo, R.M. ; Castro-Díez, Y.</creator><creatorcontrib>Gámiz-Fortis, S.R. ; Esteban-Parra, M.J. ; Trigo, R.M. ; Castro-Díez, Y.</creatorcontrib><description>We examine the potential predictability of an important Iberian river (Douro) based on the coupling of a time series approach (ARMA) and previous seasonal sea surface temperature (SST) anomalies. A comprehensive search for predictors has identified only two key regions where spring streamflow anomalies are stably correlated with previous winter SST anomalies during the whole period under study (1956–2006); (1) central North Atlantic Ocean and (2) south-western Atlantic. A modelling scheme (the SST_model), based on linear regression, is developed and applied to simulate streamflow anomalies from these key SST regions. An additional study carried out over the residual time series (residual = flow − SST_model) shows three significant quasi-oscillatory modes with periods around 5, 3 and 2.4 years. Based on this information an ARMA(4,3) model was fitted to the residual. The combined [SST_model + ARMA(4,3)] model considerably improves the skill of the model compared to the climatology or persistence, explaining 76% of the total variance for spring Douro streamflow series. We conclude that the predictability of the spring Douro streamflow can be divided in two parts: the seasonal predictability associated with the previous winter Atlantic SST and the linear interannual predictability, which is considerable lower and shows some kind of association with El Niño.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/j.jhydrol.2010.02.010</identifier><identifier>CODEN: JHYDA7</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Anomalies ; ARMA modelling ; Climate variability ; Douro River ; Earth sciences ; Earth, ocean, space ; estimation ; Exact sciences and technology ; Freshwater ; global sea surface temperature ; Global SST ; hydrologic models ; Hydrology ; Hydrology. Hydrogeology ; Marine ; Mathematical models ; oceans ; prediction ; Regression ; river flow ; rivers ; Searching ; Springs ; stream flow ; Streamflow variability ; Time series ; water temperature ; watershed hydrology ; Winter</subject><ispartof>Journal of hydrology (Amsterdam), 2010-05, Vol.385 (1), p.143-149</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a451t-3926852801139e4f40a2b4f6a411764f4e02b326a562295a997fcf4e6a42375f3</citedby><cites>FETCH-LOGICAL-a451t-3926852801139e4f40a2b4f6a411764f4e02b326a562295a997fcf4e6a42375f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jhydrol.2010.02.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22702603$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gámiz-Fortis, S.R.</creatorcontrib><creatorcontrib>Esteban-Parra, M.J.</creatorcontrib><creatorcontrib>Trigo, R.M.</creatorcontrib><creatorcontrib>Castro-Díez, Y.</creatorcontrib><title>Potential predictability of an Iberian river flow based on its relationship with previous winter global SST</title><title>Journal of hydrology (Amsterdam)</title><description>We examine the potential predictability of an important Iberian river (Douro) based on the coupling of a time series approach (ARMA) and previous seasonal sea surface temperature (SST) anomalies. A comprehensive search for predictors has identified only two key regions where spring streamflow anomalies are stably correlated with previous winter SST anomalies during the whole period under study (1956–2006); (1) central North Atlantic Ocean and (2) south-western Atlantic. A modelling scheme (the SST_model), based on linear regression, is developed and applied to simulate streamflow anomalies from these key SST regions. An additional study carried out over the residual time series (residual = flow − SST_model) shows three significant quasi-oscillatory modes with periods around 5, 3 and 2.4 years. Based on this information an ARMA(4,3) model was fitted to the residual. The combined [SST_model + ARMA(4,3)] model considerably improves the skill of the model compared to the climatology or persistence, explaining 76% of the total variance for spring Douro streamflow series. We conclude that the predictability of the spring Douro streamflow can be divided in two parts: the seasonal predictability associated with the previous winter Atlantic SST and the linear interannual predictability, which is considerable lower and shows some kind of association with El Niño.</description><subject>Anomalies</subject><subject>ARMA modelling</subject><subject>Climate variability</subject><subject>Douro River</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>estimation</subject><subject>Exact sciences and technology</subject><subject>Freshwater</subject><subject>global sea surface temperature</subject><subject>Global SST</subject><subject>hydrologic models</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Marine</subject><subject>Mathematical models</subject><subject>oceans</subject><subject>prediction</subject><subject>Regression</subject><subject>river flow</subject><subject>rivers</subject><subject>Searching</subject><subject>Springs</subject><subject>stream flow</subject><subject>Streamflow variability</subject><subject>Time series</subject><subject>water temperature</subject><subject>watershed hydrology</subject><subject>Winter</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkU9rGzEQxUVooa6bj1CiS2kv6-rfSrunUkKSBgINODmL2bUUy1VWrqQ4-Nt3jE2PrS6PGX7zZtAj5CNnC864_rpZbNb7VU5xIRj2mFignJEZ70zfCMPMGzJjTIiG6169I-9L2TB8UqoZ-XWfqptqgEi32a3CWGEIMdQ9TZ7CRG8HlwNqDjuXqY_plQ5Q3IqmiYZaaHYRakhTWYctfQ11fbDZhfRSsJoqzjzFNKD7cvnwgbz1EIs7P-mcPF5fPVz-aO5-3txefr9rQLW8NrIXumtFxziXvVNeMRCD8hoU50Zj7ZgYpNDQaiH6Fvre-BG7CAhpWi_n5PPRd5vT7xdXqn0OZXQxwuTwMGuU5i0zukfyyz9JbjotODOKIdoe0TGnUrLzdpvDM-S95cweYrAbe4rBHmKwTFgUnPt0WgFlhOgzTGMof4cF5iM0ZjEnF0fOQ7LwlJF5XKKRZLyT_IDMybcj4fDvdsFlW8bgphFTy26sdpXCf275A95uqSA</recordid><startdate>20100507</startdate><enddate>20100507</enddate><creator>Gámiz-Fortis, S.R.</creator><creator>Esteban-Parra, M.J.</creator><creator>Trigo, R.M.</creator><creator>Castro-Díez, Y.</creator><general>Elsevier B.V</general><general>[Amsterdam; New York]: Elsevier</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20100507</creationdate><title>Potential predictability of an Iberian river flow based on its relationship with previous winter global SST</title><author>Gámiz-Fortis, S.R. ; Esteban-Parra, M.J. ; Trigo, R.M. ; Castro-Díez, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a451t-3926852801139e4f40a2b4f6a411764f4e02b326a562295a997fcf4e6a42375f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anomalies</topic><topic>ARMA modelling</topic><topic>Climate variability</topic><topic>Douro River</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>estimation</topic><topic>Exact sciences and technology</topic><topic>Freshwater</topic><topic>global sea surface temperature</topic><topic>Global SST</topic><topic>hydrologic models</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Marine</topic><topic>Mathematical models</topic><topic>oceans</topic><topic>prediction</topic><topic>Regression</topic><topic>river flow</topic><topic>rivers</topic><topic>Searching</topic><topic>Springs</topic><topic>stream flow</topic><topic>Streamflow variability</topic><topic>Time series</topic><topic>water temperature</topic><topic>watershed hydrology</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gámiz-Fortis, S.R.</creatorcontrib><creatorcontrib>Esteban-Parra, M.J.</creatorcontrib><creatorcontrib>Trigo, R.M.</creatorcontrib><creatorcontrib>Castro-Díez, Y.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gámiz-Fortis, S.R.</au><au>Esteban-Parra, M.J.</au><au>Trigo, R.M.</au><au>Castro-Díez, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potential predictability of an Iberian river flow based on its relationship with previous winter global SST</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>2010-05-07</date><risdate>2010</risdate><volume>385</volume><issue>1</issue><spage>143</spage><epage>149</epage><pages>143-149</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><coden>JHYDA7</coden><abstract>We examine the potential predictability of an important Iberian river (Douro) based on the coupling of a time series approach (ARMA) and previous seasonal sea surface temperature (SST) anomalies. A comprehensive search for predictors has identified only two key regions where spring streamflow anomalies are stably correlated with previous winter SST anomalies during the whole period under study (1956–2006); (1) central North Atlantic Ocean and (2) south-western Atlantic. A modelling scheme (the SST_model), based on linear regression, is developed and applied to simulate streamflow anomalies from these key SST regions. An additional study carried out over the residual time series (residual = flow − SST_model) shows three significant quasi-oscillatory modes with periods around 5, 3 and 2.4 years. Based on this information an ARMA(4,3) model was fitted to the residual. The combined [SST_model + ARMA(4,3)] model considerably improves the skill of the model compared to the climatology or persistence, explaining 76% of the total variance for spring Douro streamflow series. We conclude that the predictability of the spring Douro streamflow can be divided in two parts: the seasonal predictability associated with the previous winter Atlantic SST and the linear interannual predictability, which is considerable lower and shows some kind of association with El Niño.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jhydrol.2010.02.010</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1694
ispartof Journal of hydrology (Amsterdam), 2010-05, Vol.385 (1), p.143-149
issn 0022-1694
1879-2707
language eng
recordid cdi_proquest_miscellaneous_746150769
source Access via ScienceDirect (Elsevier)
subjects Anomalies
ARMA modelling
Climate variability
Douro River
Earth sciences
Earth, ocean, space
estimation
Exact sciences and technology
Freshwater
global sea surface temperature
Global SST
hydrologic models
Hydrology
Hydrology. Hydrogeology
Marine
Mathematical models
oceans
prediction
Regression
river flow
rivers
Searching
Springs
stream flow
Streamflow variability
Time series
water temperature
watershed hydrology
Winter
title Potential predictability of an Iberian river flow based on its relationship with previous winter global SST
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T09%3A09%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potential%20predictability%20of%20an%20Iberian%20river%20flow%20based%20on%20its%20relationship%20with%20previous%20winter%20global%20SST&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=G%C3%A1miz-Fortis,%20S.R.&rft.date=2010-05-07&rft.volume=385&rft.issue=1&rft.spage=143&rft.epage=149&rft.pages=143-149&rft.issn=0022-1694&rft.eissn=1879-2707&rft.coden=JHYDA7&rft_id=info:doi/10.1016/j.jhydrol.2010.02.010&rft_dat=%3Cproquest_cross%3E1786210740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786210740&rft_id=info:pmid/&rft_els_id=S0022169410000806&rfr_iscdi=true