Potential predictability of an Iberian river flow based on its relationship with previous winter global SST
We examine the potential predictability of an important Iberian river (Douro) based on the coupling of a time series approach (ARMA) and previous seasonal sea surface temperature (SST) anomalies. A comprehensive search for predictors has identified only two key regions where spring streamflow anomal...
Gespeichert in:
Veröffentlicht in: | Journal of hydrology (Amsterdam) 2010-05, Vol.385 (1), p.143-149 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 149 |
---|---|
container_issue | 1 |
container_start_page | 143 |
container_title | Journal of hydrology (Amsterdam) |
container_volume | 385 |
creator | Gámiz-Fortis, S.R. Esteban-Parra, M.J. Trigo, R.M. Castro-Díez, Y. |
description | We examine the potential predictability of an important Iberian river (Douro) based on the coupling of a time series approach (ARMA) and previous seasonal sea surface temperature (SST) anomalies. A comprehensive search for predictors has identified only two key regions where spring streamflow anomalies are stably correlated with previous winter SST anomalies during the whole period under study (1956–2006); (1) central North Atlantic Ocean and (2) south-western Atlantic. A modelling scheme (the SST_model), based on linear regression, is developed and applied to simulate streamflow anomalies from these key SST regions.
An additional study carried out over the residual time series (residual
=
flow
−
SST_model) shows three significant quasi-oscillatory modes with periods around 5, 3 and 2.4
years. Based on this information an ARMA(4,3) model was fitted to the residual. The combined [SST_model
+
ARMA(4,3)] model considerably improves the skill of the model compared to the climatology or persistence, explaining 76% of the total variance for spring Douro streamflow series. We conclude that the predictability of the spring Douro streamflow can be divided in two parts: the seasonal predictability associated with the previous winter Atlantic SST and the linear interannual predictability, which is considerable lower and shows some kind of association with El Niño. |
doi_str_mv | 10.1016/j.jhydrol.2010.02.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746150769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022169410000806</els_id><sourcerecordid>1786210740</sourcerecordid><originalsourceid>FETCH-LOGICAL-a451t-3926852801139e4f40a2b4f6a411764f4e02b326a562295a997fcf4e6a42375f3</originalsourceid><addsrcrecordid>eNqFkU9rGzEQxUVooa6bj1CiS2kv6-rfSrunUkKSBgINODmL2bUUy1VWrqQ4-Nt3jE2PrS6PGX7zZtAj5CNnC864_rpZbNb7VU5xIRj2mFignJEZ70zfCMPMGzJjTIiG6169I-9L2TB8UqoZ-XWfqptqgEi32a3CWGEIMdQ9TZ7CRG8HlwNqDjuXqY_plQ5Q3IqmiYZaaHYRakhTWYctfQ11fbDZhfRSsJoqzjzFNKD7cvnwgbz1EIs7P-mcPF5fPVz-aO5-3txefr9rQLW8NrIXumtFxziXvVNeMRCD8hoU50Zj7ZgYpNDQaiH6Fvre-BG7CAhpWi_n5PPRd5vT7xdXqn0OZXQxwuTwMGuU5i0zukfyyz9JbjotODOKIdoe0TGnUrLzdpvDM-S95cweYrAbe4rBHmKwTFgUnPt0WgFlhOgzTGMof4cF5iM0ZjEnF0fOQ7LwlJF5XKKRZLyT_IDMybcj4fDvdsFlW8bgphFTy26sdpXCf275A95uqSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786210740</pqid></control><display><type>article</type><title>Potential predictability of an Iberian river flow based on its relationship with previous winter global SST</title><source>Access via ScienceDirect (Elsevier)</source><creator>Gámiz-Fortis, S.R. ; Esteban-Parra, M.J. ; Trigo, R.M. ; Castro-Díez, Y.</creator><creatorcontrib>Gámiz-Fortis, S.R. ; Esteban-Parra, M.J. ; Trigo, R.M. ; Castro-Díez, Y.</creatorcontrib><description>We examine the potential predictability of an important Iberian river (Douro) based on the coupling of a time series approach (ARMA) and previous seasonal sea surface temperature (SST) anomalies. A comprehensive search for predictors has identified only two key regions where spring streamflow anomalies are stably correlated with previous winter SST anomalies during the whole period under study (1956–2006); (1) central North Atlantic Ocean and (2) south-western Atlantic. A modelling scheme (the SST_model), based on linear regression, is developed and applied to simulate streamflow anomalies from these key SST regions.
An additional study carried out over the residual time series (residual
=
flow
−
SST_model) shows three significant quasi-oscillatory modes with periods around 5, 3 and 2.4
years. Based on this information an ARMA(4,3) model was fitted to the residual. The combined [SST_model
+
ARMA(4,3)] model considerably improves the skill of the model compared to the climatology or persistence, explaining 76% of the total variance for spring Douro streamflow series. We conclude that the predictability of the spring Douro streamflow can be divided in two parts: the seasonal predictability associated with the previous winter Atlantic SST and the linear interannual predictability, which is considerable lower and shows some kind of association with El Niño.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/j.jhydrol.2010.02.010</identifier><identifier>CODEN: JHYDA7</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Anomalies ; ARMA modelling ; Climate variability ; Douro River ; Earth sciences ; Earth, ocean, space ; estimation ; Exact sciences and technology ; Freshwater ; global sea surface temperature ; Global SST ; hydrologic models ; Hydrology ; Hydrology. Hydrogeology ; Marine ; Mathematical models ; oceans ; prediction ; Regression ; river flow ; rivers ; Searching ; Springs ; stream flow ; Streamflow variability ; Time series ; water temperature ; watershed hydrology ; Winter</subject><ispartof>Journal of hydrology (Amsterdam), 2010-05, Vol.385 (1), p.143-149</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a451t-3926852801139e4f40a2b4f6a411764f4e02b326a562295a997fcf4e6a42375f3</citedby><cites>FETCH-LOGICAL-a451t-3926852801139e4f40a2b4f6a411764f4e02b326a562295a997fcf4e6a42375f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jhydrol.2010.02.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22702603$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gámiz-Fortis, S.R.</creatorcontrib><creatorcontrib>Esteban-Parra, M.J.</creatorcontrib><creatorcontrib>Trigo, R.M.</creatorcontrib><creatorcontrib>Castro-Díez, Y.</creatorcontrib><title>Potential predictability of an Iberian river flow based on its relationship with previous winter global SST</title><title>Journal of hydrology (Amsterdam)</title><description>We examine the potential predictability of an important Iberian river (Douro) based on the coupling of a time series approach (ARMA) and previous seasonal sea surface temperature (SST) anomalies. A comprehensive search for predictors has identified only two key regions where spring streamflow anomalies are stably correlated with previous winter SST anomalies during the whole period under study (1956–2006); (1) central North Atlantic Ocean and (2) south-western Atlantic. A modelling scheme (the SST_model), based on linear regression, is developed and applied to simulate streamflow anomalies from these key SST regions.
An additional study carried out over the residual time series (residual
=
flow
−
SST_model) shows three significant quasi-oscillatory modes with periods around 5, 3 and 2.4
years. Based on this information an ARMA(4,3) model was fitted to the residual. The combined [SST_model
+
ARMA(4,3)] model considerably improves the skill of the model compared to the climatology or persistence, explaining 76% of the total variance for spring Douro streamflow series. We conclude that the predictability of the spring Douro streamflow can be divided in two parts: the seasonal predictability associated with the previous winter Atlantic SST and the linear interannual predictability, which is considerable lower and shows some kind of association with El Niño.</description><subject>Anomalies</subject><subject>ARMA modelling</subject><subject>Climate variability</subject><subject>Douro River</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>estimation</subject><subject>Exact sciences and technology</subject><subject>Freshwater</subject><subject>global sea surface temperature</subject><subject>Global SST</subject><subject>hydrologic models</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Marine</subject><subject>Mathematical models</subject><subject>oceans</subject><subject>prediction</subject><subject>Regression</subject><subject>river flow</subject><subject>rivers</subject><subject>Searching</subject><subject>Springs</subject><subject>stream flow</subject><subject>Streamflow variability</subject><subject>Time series</subject><subject>water temperature</subject><subject>watershed hydrology</subject><subject>Winter</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkU9rGzEQxUVooa6bj1CiS2kv6-rfSrunUkKSBgINODmL2bUUy1VWrqQ4-Nt3jE2PrS6PGX7zZtAj5CNnC864_rpZbNb7VU5xIRj2mFignJEZ70zfCMPMGzJjTIiG6169I-9L2TB8UqoZ-XWfqptqgEi32a3CWGEIMdQ9TZ7CRG8HlwNqDjuXqY_plQ5Q3IqmiYZaaHYRakhTWYctfQ11fbDZhfRSsJoqzjzFNKD7cvnwgbz1EIs7P-mcPF5fPVz-aO5-3txefr9rQLW8NrIXumtFxziXvVNeMRCD8hoU50Zj7ZgYpNDQaiH6Fvre-BG7CAhpWi_n5PPRd5vT7xdXqn0OZXQxwuTwMGuU5i0zukfyyz9JbjotODOKIdoe0TGnUrLzdpvDM-S95cweYrAbe4rBHmKwTFgUnPt0WgFlhOgzTGMof4cF5iM0ZjEnF0fOQ7LwlJF5XKKRZLyT_IDMybcj4fDvdsFlW8bgphFTy26sdpXCf275A95uqSA</recordid><startdate>20100507</startdate><enddate>20100507</enddate><creator>Gámiz-Fortis, S.R.</creator><creator>Esteban-Parra, M.J.</creator><creator>Trigo, R.M.</creator><creator>Castro-Díez, Y.</creator><general>Elsevier B.V</general><general>[Amsterdam; New York]: Elsevier</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20100507</creationdate><title>Potential predictability of an Iberian river flow based on its relationship with previous winter global SST</title><author>Gámiz-Fortis, S.R. ; Esteban-Parra, M.J. ; Trigo, R.M. ; Castro-Díez, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a451t-3926852801139e4f40a2b4f6a411764f4e02b326a562295a997fcf4e6a42375f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anomalies</topic><topic>ARMA modelling</topic><topic>Climate variability</topic><topic>Douro River</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>estimation</topic><topic>Exact sciences and technology</topic><topic>Freshwater</topic><topic>global sea surface temperature</topic><topic>Global SST</topic><topic>hydrologic models</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Marine</topic><topic>Mathematical models</topic><topic>oceans</topic><topic>prediction</topic><topic>Regression</topic><topic>river flow</topic><topic>rivers</topic><topic>Searching</topic><topic>Springs</topic><topic>stream flow</topic><topic>Streamflow variability</topic><topic>Time series</topic><topic>water temperature</topic><topic>watershed hydrology</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gámiz-Fortis, S.R.</creatorcontrib><creatorcontrib>Esteban-Parra, M.J.</creatorcontrib><creatorcontrib>Trigo, R.M.</creatorcontrib><creatorcontrib>Castro-Díez, Y.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gámiz-Fortis, S.R.</au><au>Esteban-Parra, M.J.</au><au>Trigo, R.M.</au><au>Castro-Díez, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potential predictability of an Iberian river flow based on its relationship with previous winter global SST</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>2010-05-07</date><risdate>2010</risdate><volume>385</volume><issue>1</issue><spage>143</spage><epage>149</epage><pages>143-149</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><coden>JHYDA7</coden><abstract>We examine the potential predictability of an important Iberian river (Douro) based on the coupling of a time series approach (ARMA) and previous seasonal sea surface temperature (SST) anomalies. A comprehensive search for predictors has identified only two key regions where spring streamflow anomalies are stably correlated with previous winter SST anomalies during the whole period under study (1956–2006); (1) central North Atlantic Ocean and (2) south-western Atlantic. A modelling scheme (the SST_model), based on linear regression, is developed and applied to simulate streamflow anomalies from these key SST regions.
An additional study carried out over the residual time series (residual
=
flow
−
SST_model) shows three significant quasi-oscillatory modes with periods around 5, 3 and 2.4
years. Based on this information an ARMA(4,3) model was fitted to the residual. The combined [SST_model
+
ARMA(4,3)] model considerably improves the skill of the model compared to the climatology or persistence, explaining 76% of the total variance for spring Douro streamflow series. We conclude that the predictability of the spring Douro streamflow can be divided in two parts: the seasonal predictability associated with the previous winter Atlantic SST and the linear interannual predictability, which is considerable lower and shows some kind of association with El Niño.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jhydrol.2010.02.010</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1694 |
ispartof | Journal of hydrology (Amsterdam), 2010-05, Vol.385 (1), p.143-149 |
issn | 0022-1694 1879-2707 |
language | eng |
recordid | cdi_proquest_miscellaneous_746150769 |
source | Access via ScienceDirect (Elsevier) |
subjects | Anomalies ARMA modelling Climate variability Douro River Earth sciences Earth, ocean, space estimation Exact sciences and technology Freshwater global sea surface temperature Global SST hydrologic models Hydrology Hydrology. Hydrogeology Marine Mathematical models oceans prediction Regression river flow rivers Searching Springs stream flow Streamflow variability Time series water temperature watershed hydrology Winter |
title | Potential predictability of an Iberian river flow based on its relationship with previous winter global SST |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T09%3A09%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potential%20predictability%20of%20an%20Iberian%20river%20flow%20based%20on%20its%20relationship%20with%20previous%20winter%20global%20SST&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=G%C3%A1miz-Fortis,%20S.R.&rft.date=2010-05-07&rft.volume=385&rft.issue=1&rft.spage=143&rft.epage=149&rft.pages=143-149&rft.issn=0022-1694&rft.eissn=1879-2707&rft.coden=JHYDA7&rft_id=info:doi/10.1016/j.jhydrol.2010.02.010&rft_dat=%3Cproquest_cross%3E1786210740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786210740&rft_id=info:pmid/&rft_els_id=S0022169410000806&rfr_iscdi=true |