Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells
Microbial fuel cells (MFCs) can use nitrate as a cathodic electron acceptor, allowing for simultaneous removal of carbon (at the anode) and nitrogen (at the cathode). In this study, we supplemented the cathodic process with in situ nitrification through specific aeration, and thus obtained simultane...
Gespeichert in:
Veröffentlicht in: | Water research (Oxford) 2010-05, Vol.44 (9), p.2970-2980 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2980 |
---|---|
container_issue | 9 |
container_start_page | 2970 |
container_title | Water research (Oxford) |
container_volume | 44 |
creator | Virdis, Bernardino Rabaey, Korneel Rozendal, René A. Yuan, Zhiguo Keller, Jürg |
description | Microbial fuel cells (MFCs) can use nitrate as a cathodic electron acceptor, allowing for simultaneous removal of carbon (at the anode) and nitrogen (at the cathode). In this study, we supplemented the cathodic process with
in situ nitrification through specific aeration, and thus obtained simultaneous nitrification and denitrification (SND) in the one half-cell. Synthetic wastewater containing acetate and ammonium was supplied to the anode; the effluent was subsequently directed to the cathode. The influence of oxygen levels and carbon/nitrogen concentrations and ratios on the system performances was investigated. Denitrification occurred simultaneously with nitrification at the cathode, producing an effluent with levels of nitrate and ammonium as low as 1.0
±
0.5
mg
N
L
−1 and 2.13
±
0.05
mg
N
L
−1, respectively, resulting in a nitrogen removal efficiency of 94.1
±
0.9%. The integration of the nitrification process into the cathode solves the drawback of ammonium losses due to diffusion between compartments in the MFC, as previously reported in a system operating with external nitrification stage. This work represents the first successful attempt to combine SND and organics oxidation while producing electricity in an MFC. |
doi_str_mv | 10.1016/j.watres.2010.02.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746148796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043135410001430</els_id><sourcerecordid>746148796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-7c1ef861cddd0a0b5978abe1a81e736acba65d039e83e47605a14aee587ff98e3</originalsourceid><addsrcrecordid>eNqF0U1rFTEUBuAgir1e_QeisxFdONeTSSbJbApStAoFF7Vuw5nkjOQyHzWZaem_N5e5Kt1UCOSDJzlJXsZecthx4OrDfneLc6S0qyAvQZVb9YhtuNFNWUlpHrMNgBQlF7U8Yc9S2gNkIpqn7KQCAYILtWE_LsOw9DOONC2pGMMcQxcczmEa3xee7i0UOPrCYWzzMNIw3WBfhLEYgotTG_KkW6gvHPV9es6edNgnenHst-zq86fvZ1_Ki2_nX88-XpROGphL7Th1RnHnvQeEtm60wZY4Gk5aKHQtqtqDaMgIklpBjVwiUW101zWGxJa9Xc-9jtOvhdJsh5AON1gfZLVUXOYfUf-XQkJVS82zfPeg5FoA1FroOlO50vwDKUXq7HUMA8Y7y8EeUrJ7u6ZkDylZqOwhgi17daywtAP5v5v-xJLBmyPA5LDvIo4upH-uUk1-WJPd69V1OFn8GbO5usyVBHCTgdBZnK6Ccgo3gaJNLtDoyIdIbrZ-Cg_f9Tfz47vQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730057375</pqid></control><display><type>article</type><title>Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Virdis, Bernardino ; Rabaey, Korneel ; Rozendal, René A. ; Yuan, Zhiguo ; Keller, Jürg</creator><creatorcontrib>Virdis, Bernardino ; Rabaey, Korneel ; Rozendal, René A. ; Yuan, Zhiguo ; Keller, Jürg</creatorcontrib><description>Microbial fuel cells (MFCs) can use nitrate as a cathodic electron acceptor, allowing for simultaneous removal of carbon (at the anode) and nitrogen (at the cathode). In this study, we supplemented the cathodic process with
in situ nitrification through specific aeration, and thus obtained simultaneous nitrification and denitrification (SND) in the one half-cell. Synthetic wastewater containing acetate and ammonium was supplied to the anode; the effluent was subsequently directed to the cathode. The influence of oxygen levels and carbon/nitrogen concentrations and ratios on the system performances was investigated. Denitrification occurred simultaneously with nitrification at the cathode, producing an effluent with levels of nitrate and ammonium as low as 1.0
±
0.5
mg
N
L
−1 and 2.13
±
0.05
mg
N
L
−1, respectively, resulting in a nitrogen removal efficiency of 94.1
±
0.9%. The integration of the nitrification process into the cathode solves the drawback of ammonium losses due to diffusion between compartments in the MFC, as previously reported in a system operating with external nitrification stage. This work represents the first successful attempt to combine SND and organics oxidation while producing electricity in an MFC.</description><identifier>ISSN: 0043-1354</identifier><identifier>EISSN: 1879-2448</identifier><identifier>DOI: 10.1016/j.watres.2010.02.022</identifier><identifier>PMID: 20303136</identifier><identifier>CODEN: WATRAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Acetates ; aeration ; ammonia ; Anodes ; Applied sciences ; Biochemical fuel cells ; Bioelectric Energy Sources ; Bioelectrochemical systems ; Carbon ; Carbon - isolation & purification ; Cathodes ; COD to N ratio ; Denitrification ; Effluents ; Electrodes ; Exact sciences and technology ; fuel loading ; Loop configuration ; Microbial fuel cell ; microbial fuel cells ; Microorganisms ; Nitrates ; Nitrates - chemistry ; Nitrification ; Other industrial wastes. Sewage sludge ; Oxidation-Reduction ; Pollution ; Quaternary Ammonium Compounds ; Wastes ; wastewater treatment ; Water Pollutants, Chemical - chemistry ; Water treatment and pollution</subject><ispartof>Water research (Oxford), 2010-05, Vol.44 (9), p.2970-2980</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright (c) 2010 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-7c1ef861cddd0a0b5978abe1a81e736acba65d039e83e47605a14aee587ff98e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.watres.2010.02.022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22694619$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20303136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Virdis, Bernardino</creatorcontrib><creatorcontrib>Rabaey, Korneel</creatorcontrib><creatorcontrib>Rozendal, René A.</creatorcontrib><creatorcontrib>Yuan, Zhiguo</creatorcontrib><creatorcontrib>Keller, Jürg</creatorcontrib><title>Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells</title><title>Water research (Oxford)</title><addtitle>Water Res</addtitle><description>Microbial fuel cells (MFCs) can use nitrate as a cathodic electron acceptor, allowing for simultaneous removal of carbon (at the anode) and nitrogen (at the cathode). In this study, we supplemented the cathodic process with
in situ nitrification through specific aeration, and thus obtained simultaneous nitrification and denitrification (SND) in the one half-cell. Synthetic wastewater containing acetate and ammonium was supplied to the anode; the effluent was subsequently directed to the cathode. The influence of oxygen levels and carbon/nitrogen concentrations and ratios on the system performances was investigated. Denitrification occurred simultaneously with nitrification at the cathode, producing an effluent with levels of nitrate and ammonium as low as 1.0
±
0.5
mg
N
L
−1 and 2.13
±
0.05
mg
N
L
−1, respectively, resulting in a nitrogen removal efficiency of 94.1
±
0.9%. The integration of the nitrification process into the cathode solves the drawback of ammonium losses due to diffusion between compartments in the MFC, as previously reported in a system operating with external nitrification stage. This work represents the first successful attempt to combine SND and organics oxidation while producing electricity in an MFC.</description><subject>Acetates</subject><subject>aeration</subject><subject>ammonia</subject><subject>Anodes</subject><subject>Applied sciences</subject><subject>Biochemical fuel cells</subject><subject>Bioelectric Energy Sources</subject><subject>Bioelectrochemical systems</subject><subject>Carbon</subject><subject>Carbon - isolation & purification</subject><subject>Cathodes</subject><subject>COD to N ratio</subject><subject>Denitrification</subject><subject>Effluents</subject><subject>Electrodes</subject><subject>Exact sciences and technology</subject><subject>fuel loading</subject><subject>Loop configuration</subject><subject>Microbial fuel cell</subject><subject>microbial fuel cells</subject><subject>Microorganisms</subject><subject>Nitrates</subject><subject>Nitrates - chemistry</subject><subject>Nitrification</subject><subject>Other industrial wastes. Sewage sludge</subject><subject>Oxidation-Reduction</subject><subject>Pollution</subject><subject>Quaternary Ammonium Compounds</subject><subject>Wastes</subject><subject>wastewater treatment</subject><subject>Water Pollutants, Chemical - chemistry</subject><subject>Water treatment and pollution</subject><issn>0043-1354</issn><issn>1879-2448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1rFTEUBuAgir1e_QeisxFdONeTSSbJbApStAoFF7Vuw5nkjOQyHzWZaem_N5e5Kt1UCOSDJzlJXsZecthx4OrDfneLc6S0qyAvQZVb9YhtuNFNWUlpHrMNgBQlF7U8Yc9S2gNkIpqn7KQCAYILtWE_LsOw9DOONC2pGMMcQxcczmEa3xee7i0UOPrCYWzzMNIw3WBfhLEYgotTG_KkW6gvHPV9es6edNgnenHst-zq86fvZ1_Ki2_nX88-XpROGphL7Th1RnHnvQeEtm60wZY4Gk5aKHQtqtqDaMgIklpBjVwiUW101zWGxJa9Xc-9jtOvhdJsh5AON1gfZLVUXOYfUf-XQkJVS82zfPeg5FoA1FroOlO50vwDKUXq7HUMA8Y7y8EeUrJ7u6ZkDylZqOwhgi17daywtAP5v5v-xJLBmyPA5LDvIo4upH-uUk1-WJPd69V1OFn8GbO5usyVBHCTgdBZnK6Ccgo3gaJNLtDoyIdIbrZ-Cg_f9Tfz47vQ</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Virdis, Bernardino</creator><creator>Rabaey, Korneel</creator><creator>Rozendal, René A.</creator><creator>Yuan, Zhiguo</creator><creator>Keller, Jürg</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7X8</scope><scope>7QH</scope><scope>7ST</scope><scope>7T7</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20100501</creationdate><title>Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells</title><author>Virdis, Bernardino ; Rabaey, Korneel ; Rozendal, René A. ; Yuan, Zhiguo ; Keller, Jürg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-7c1ef861cddd0a0b5978abe1a81e736acba65d039e83e47605a14aee587ff98e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acetates</topic><topic>aeration</topic><topic>ammonia</topic><topic>Anodes</topic><topic>Applied sciences</topic><topic>Biochemical fuel cells</topic><topic>Bioelectric Energy Sources</topic><topic>Bioelectrochemical systems</topic><topic>Carbon</topic><topic>Carbon - isolation & purification</topic><topic>Cathodes</topic><topic>COD to N ratio</topic><topic>Denitrification</topic><topic>Effluents</topic><topic>Electrodes</topic><topic>Exact sciences and technology</topic><topic>fuel loading</topic><topic>Loop configuration</topic><topic>Microbial fuel cell</topic><topic>microbial fuel cells</topic><topic>Microorganisms</topic><topic>Nitrates</topic><topic>Nitrates - chemistry</topic><topic>Nitrification</topic><topic>Other industrial wastes. Sewage sludge</topic><topic>Oxidation-Reduction</topic><topic>Pollution</topic><topic>Quaternary Ammonium Compounds</topic><topic>Wastes</topic><topic>wastewater treatment</topic><topic>Water Pollutants, Chemical - chemistry</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Virdis, Bernardino</creatorcontrib><creatorcontrib>Rabaey, Korneel</creatorcontrib><creatorcontrib>Rozendal, René A.</creatorcontrib><creatorcontrib>Yuan, Zhiguo</creatorcontrib><creatorcontrib>Keller, Jürg</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Water research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Virdis, Bernardino</au><au>Rabaey, Korneel</au><au>Rozendal, René A.</au><au>Yuan, Zhiguo</au><au>Keller, Jürg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells</atitle><jtitle>Water research (Oxford)</jtitle><addtitle>Water Res</addtitle><date>2010-05-01</date><risdate>2010</risdate><volume>44</volume><issue>9</issue><spage>2970</spage><epage>2980</epage><pages>2970-2980</pages><issn>0043-1354</issn><eissn>1879-2448</eissn><coden>WATRAG</coden><abstract>Microbial fuel cells (MFCs) can use nitrate as a cathodic electron acceptor, allowing for simultaneous removal of carbon (at the anode) and nitrogen (at the cathode). In this study, we supplemented the cathodic process with
in situ nitrification through specific aeration, and thus obtained simultaneous nitrification and denitrification (SND) in the one half-cell. Synthetic wastewater containing acetate and ammonium was supplied to the anode; the effluent was subsequently directed to the cathode. The influence of oxygen levels and carbon/nitrogen concentrations and ratios on the system performances was investigated. Denitrification occurred simultaneously with nitrification at the cathode, producing an effluent with levels of nitrate and ammonium as low as 1.0
±
0.5
mg
N
L
−1 and 2.13
±
0.05
mg
N
L
−1, respectively, resulting in a nitrogen removal efficiency of 94.1
±
0.9%. The integration of the nitrification process into the cathode solves the drawback of ammonium losses due to diffusion between compartments in the MFC, as previously reported in a system operating with external nitrification stage. This work represents the first successful attempt to combine SND and organics oxidation while producing electricity in an MFC.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>20303136</pmid><doi>10.1016/j.watres.2010.02.022</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1354 |
ispartof | Water research (Oxford), 2010-05, Vol.44 (9), p.2970-2980 |
issn | 0043-1354 1879-2448 |
language | eng |
recordid | cdi_proquest_miscellaneous_746148796 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Acetates aeration ammonia Anodes Applied sciences Biochemical fuel cells Bioelectric Energy Sources Bioelectrochemical systems Carbon Carbon - isolation & purification Cathodes COD to N ratio Denitrification Effluents Electrodes Exact sciences and technology fuel loading Loop configuration Microbial fuel cell microbial fuel cells Microorganisms Nitrates Nitrates - chemistry Nitrification Other industrial wastes. Sewage sludge Oxidation-Reduction Pollution Quaternary Ammonium Compounds Wastes wastewater treatment Water Pollutants, Chemical - chemistry Water treatment and pollution |
title | Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A55%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20nitrification,%20denitrification%20and%20carbon%20removal%20in%20microbial%20fuel%20cells&rft.jtitle=Water%20research%20(Oxford)&rft.au=Virdis,%20Bernardino&rft.date=2010-05-01&rft.volume=44&rft.issue=9&rft.spage=2970&rft.epage=2980&rft.pages=2970-2980&rft.issn=0043-1354&rft.eissn=1879-2448&rft.coden=WATRAG&rft_id=info:doi/10.1016/j.watres.2010.02.022&rft_dat=%3Cproquest_cross%3E746148796%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1730057375&rft_id=info:pmid/20303136&rft_els_id=S0043135410001430&rfr_iscdi=true |