Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells

Microbial fuel cells (MFCs) can use nitrate as a cathodic electron acceptor, allowing for simultaneous removal of carbon (at the anode) and nitrogen (at the cathode). In this study, we supplemented the cathodic process with in situ nitrification through specific aeration, and thus obtained simultane...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water research (Oxford) 2010-05, Vol.44 (9), p.2970-2980
Hauptverfasser: Virdis, Bernardino, Rabaey, Korneel, Rozendal, René A., Yuan, Zhiguo, Keller, Jürg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2980
container_issue 9
container_start_page 2970
container_title Water research (Oxford)
container_volume 44
creator Virdis, Bernardino
Rabaey, Korneel
Rozendal, René A.
Yuan, Zhiguo
Keller, Jürg
description Microbial fuel cells (MFCs) can use nitrate as a cathodic electron acceptor, allowing for simultaneous removal of carbon (at the anode) and nitrogen (at the cathode). In this study, we supplemented the cathodic process with in situ nitrification through specific aeration, and thus obtained simultaneous nitrification and denitrification (SND) in the one half-cell. Synthetic wastewater containing acetate and ammonium was supplied to the anode; the effluent was subsequently directed to the cathode. The influence of oxygen levels and carbon/nitrogen concentrations and ratios on the system performances was investigated. Denitrification occurred simultaneously with nitrification at the cathode, producing an effluent with levels of nitrate and ammonium as low as 1.0 ± 0.5 mg N L −1 and 2.13 ± 0.05 mg N L −1, respectively, resulting in a nitrogen removal efficiency of 94.1 ± 0.9%. The integration of the nitrification process into the cathode solves the drawback of ammonium losses due to diffusion between compartments in the MFC, as previously reported in a system operating with external nitrification stage. This work represents the first successful attempt to combine SND and organics oxidation while producing electricity in an MFC.
doi_str_mv 10.1016/j.watres.2010.02.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746148796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043135410001430</els_id><sourcerecordid>746148796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-7c1ef861cddd0a0b5978abe1a81e736acba65d039e83e47605a14aee587ff98e3</originalsourceid><addsrcrecordid>eNqF0U1rFTEUBuAgir1e_QeisxFdONeTSSbJbApStAoFF7Vuw5nkjOQyHzWZaem_N5e5Kt1UCOSDJzlJXsZecthx4OrDfneLc6S0qyAvQZVb9YhtuNFNWUlpHrMNgBQlF7U8Yc9S2gNkIpqn7KQCAYILtWE_LsOw9DOONC2pGMMcQxcczmEa3xee7i0UOPrCYWzzMNIw3WBfhLEYgotTG_KkW6gvHPV9es6edNgnenHst-zq86fvZ1_Ki2_nX88-XpROGphL7Th1RnHnvQeEtm60wZY4Gk5aKHQtqtqDaMgIklpBjVwiUW101zWGxJa9Xc-9jtOvhdJsh5AON1gfZLVUXOYfUf-XQkJVS82zfPeg5FoA1FroOlO50vwDKUXq7HUMA8Y7y8EeUrJ7u6ZkDylZqOwhgi17daywtAP5v5v-xJLBmyPA5LDvIo4upH-uUk1-WJPd69V1OFn8GbO5usyVBHCTgdBZnK6Ccgo3gaJNLtDoyIdIbrZ-Cg_f9Tfz47vQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730057375</pqid></control><display><type>article</type><title>Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Virdis, Bernardino ; Rabaey, Korneel ; Rozendal, René A. ; Yuan, Zhiguo ; Keller, Jürg</creator><creatorcontrib>Virdis, Bernardino ; Rabaey, Korneel ; Rozendal, René A. ; Yuan, Zhiguo ; Keller, Jürg</creatorcontrib><description>Microbial fuel cells (MFCs) can use nitrate as a cathodic electron acceptor, allowing for simultaneous removal of carbon (at the anode) and nitrogen (at the cathode). In this study, we supplemented the cathodic process with in situ nitrification through specific aeration, and thus obtained simultaneous nitrification and denitrification (SND) in the one half-cell. Synthetic wastewater containing acetate and ammonium was supplied to the anode; the effluent was subsequently directed to the cathode. The influence of oxygen levels and carbon/nitrogen concentrations and ratios on the system performances was investigated. Denitrification occurred simultaneously with nitrification at the cathode, producing an effluent with levels of nitrate and ammonium as low as 1.0 ± 0.5 mg N L −1 and 2.13 ± 0.05 mg N L −1, respectively, resulting in a nitrogen removal efficiency of 94.1 ± 0.9%. The integration of the nitrification process into the cathode solves the drawback of ammonium losses due to diffusion between compartments in the MFC, as previously reported in a system operating with external nitrification stage. This work represents the first successful attempt to combine SND and organics oxidation while producing electricity in an MFC.</description><identifier>ISSN: 0043-1354</identifier><identifier>EISSN: 1879-2448</identifier><identifier>DOI: 10.1016/j.watres.2010.02.022</identifier><identifier>PMID: 20303136</identifier><identifier>CODEN: WATRAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Acetates ; aeration ; ammonia ; Anodes ; Applied sciences ; Biochemical fuel cells ; Bioelectric Energy Sources ; Bioelectrochemical systems ; Carbon ; Carbon - isolation &amp; purification ; Cathodes ; COD to N ratio ; Denitrification ; Effluents ; Electrodes ; Exact sciences and technology ; fuel loading ; Loop configuration ; Microbial fuel cell ; microbial fuel cells ; Microorganisms ; Nitrates ; Nitrates - chemistry ; Nitrification ; Other industrial wastes. Sewage sludge ; Oxidation-Reduction ; Pollution ; Quaternary Ammonium Compounds ; Wastes ; wastewater treatment ; Water Pollutants, Chemical - chemistry ; Water treatment and pollution</subject><ispartof>Water research (Oxford), 2010-05, Vol.44 (9), p.2970-2980</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright (c) 2010 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-7c1ef861cddd0a0b5978abe1a81e736acba65d039e83e47605a14aee587ff98e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.watres.2010.02.022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22694619$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20303136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Virdis, Bernardino</creatorcontrib><creatorcontrib>Rabaey, Korneel</creatorcontrib><creatorcontrib>Rozendal, René A.</creatorcontrib><creatorcontrib>Yuan, Zhiguo</creatorcontrib><creatorcontrib>Keller, Jürg</creatorcontrib><title>Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells</title><title>Water research (Oxford)</title><addtitle>Water Res</addtitle><description>Microbial fuel cells (MFCs) can use nitrate as a cathodic electron acceptor, allowing for simultaneous removal of carbon (at the anode) and nitrogen (at the cathode). In this study, we supplemented the cathodic process with in situ nitrification through specific aeration, and thus obtained simultaneous nitrification and denitrification (SND) in the one half-cell. Synthetic wastewater containing acetate and ammonium was supplied to the anode; the effluent was subsequently directed to the cathode. The influence of oxygen levels and carbon/nitrogen concentrations and ratios on the system performances was investigated. Denitrification occurred simultaneously with nitrification at the cathode, producing an effluent with levels of nitrate and ammonium as low as 1.0 ± 0.5 mg N L −1 and 2.13 ± 0.05 mg N L −1, respectively, resulting in a nitrogen removal efficiency of 94.1 ± 0.9%. The integration of the nitrification process into the cathode solves the drawback of ammonium losses due to diffusion between compartments in the MFC, as previously reported in a system operating with external nitrification stage. This work represents the first successful attempt to combine SND and organics oxidation while producing electricity in an MFC.</description><subject>Acetates</subject><subject>aeration</subject><subject>ammonia</subject><subject>Anodes</subject><subject>Applied sciences</subject><subject>Biochemical fuel cells</subject><subject>Bioelectric Energy Sources</subject><subject>Bioelectrochemical systems</subject><subject>Carbon</subject><subject>Carbon - isolation &amp; purification</subject><subject>Cathodes</subject><subject>COD to N ratio</subject><subject>Denitrification</subject><subject>Effluents</subject><subject>Electrodes</subject><subject>Exact sciences and technology</subject><subject>fuel loading</subject><subject>Loop configuration</subject><subject>Microbial fuel cell</subject><subject>microbial fuel cells</subject><subject>Microorganisms</subject><subject>Nitrates</subject><subject>Nitrates - chemistry</subject><subject>Nitrification</subject><subject>Other industrial wastes. Sewage sludge</subject><subject>Oxidation-Reduction</subject><subject>Pollution</subject><subject>Quaternary Ammonium Compounds</subject><subject>Wastes</subject><subject>wastewater treatment</subject><subject>Water Pollutants, Chemical - chemistry</subject><subject>Water treatment and pollution</subject><issn>0043-1354</issn><issn>1879-2448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1rFTEUBuAgir1e_QeisxFdONeTSSbJbApStAoFF7Vuw5nkjOQyHzWZaem_N5e5Kt1UCOSDJzlJXsZecthx4OrDfneLc6S0qyAvQZVb9YhtuNFNWUlpHrMNgBQlF7U8Yc9S2gNkIpqn7KQCAYILtWE_LsOw9DOONC2pGMMcQxcczmEa3xee7i0UOPrCYWzzMNIw3WBfhLEYgotTG_KkW6gvHPV9es6edNgnenHst-zq86fvZ1_Ki2_nX88-XpROGphL7Th1RnHnvQeEtm60wZY4Gk5aKHQtqtqDaMgIklpBjVwiUW101zWGxJa9Xc-9jtOvhdJsh5AON1gfZLVUXOYfUf-XQkJVS82zfPeg5FoA1FroOlO50vwDKUXq7HUMA8Y7y8EeUrJ7u6ZkDylZqOwhgi17daywtAP5v5v-xJLBmyPA5LDvIo4upH-uUk1-WJPd69V1OFn8GbO5usyVBHCTgdBZnK6Ccgo3gaJNLtDoyIdIbrZ-Cg_f9Tfz47vQ</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Virdis, Bernardino</creator><creator>Rabaey, Korneel</creator><creator>Rozendal, René A.</creator><creator>Yuan, Zhiguo</creator><creator>Keller, Jürg</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7X8</scope><scope>7QH</scope><scope>7ST</scope><scope>7T7</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20100501</creationdate><title>Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells</title><author>Virdis, Bernardino ; Rabaey, Korneel ; Rozendal, René A. ; Yuan, Zhiguo ; Keller, Jürg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-7c1ef861cddd0a0b5978abe1a81e736acba65d039e83e47605a14aee587ff98e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acetates</topic><topic>aeration</topic><topic>ammonia</topic><topic>Anodes</topic><topic>Applied sciences</topic><topic>Biochemical fuel cells</topic><topic>Bioelectric Energy Sources</topic><topic>Bioelectrochemical systems</topic><topic>Carbon</topic><topic>Carbon - isolation &amp; purification</topic><topic>Cathodes</topic><topic>COD to N ratio</topic><topic>Denitrification</topic><topic>Effluents</topic><topic>Electrodes</topic><topic>Exact sciences and technology</topic><topic>fuel loading</topic><topic>Loop configuration</topic><topic>Microbial fuel cell</topic><topic>microbial fuel cells</topic><topic>Microorganisms</topic><topic>Nitrates</topic><topic>Nitrates - chemistry</topic><topic>Nitrification</topic><topic>Other industrial wastes. Sewage sludge</topic><topic>Oxidation-Reduction</topic><topic>Pollution</topic><topic>Quaternary Ammonium Compounds</topic><topic>Wastes</topic><topic>wastewater treatment</topic><topic>Water Pollutants, Chemical - chemistry</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Virdis, Bernardino</creatorcontrib><creatorcontrib>Rabaey, Korneel</creatorcontrib><creatorcontrib>Rozendal, René A.</creatorcontrib><creatorcontrib>Yuan, Zhiguo</creatorcontrib><creatorcontrib>Keller, Jürg</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Water research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Virdis, Bernardino</au><au>Rabaey, Korneel</au><au>Rozendal, René A.</au><au>Yuan, Zhiguo</au><au>Keller, Jürg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells</atitle><jtitle>Water research (Oxford)</jtitle><addtitle>Water Res</addtitle><date>2010-05-01</date><risdate>2010</risdate><volume>44</volume><issue>9</issue><spage>2970</spage><epage>2980</epage><pages>2970-2980</pages><issn>0043-1354</issn><eissn>1879-2448</eissn><coden>WATRAG</coden><abstract>Microbial fuel cells (MFCs) can use nitrate as a cathodic electron acceptor, allowing for simultaneous removal of carbon (at the anode) and nitrogen (at the cathode). In this study, we supplemented the cathodic process with in situ nitrification through specific aeration, and thus obtained simultaneous nitrification and denitrification (SND) in the one half-cell. Synthetic wastewater containing acetate and ammonium was supplied to the anode; the effluent was subsequently directed to the cathode. The influence of oxygen levels and carbon/nitrogen concentrations and ratios on the system performances was investigated. Denitrification occurred simultaneously with nitrification at the cathode, producing an effluent with levels of nitrate and ammonium as low as 1.0 ± 0.5 mg N L −1 and 2.13 ± 0.05 mg N L −1, respectively, resulting in a nitrogen removal efficiency of 94.1 ± 0.9%. The integration of the nitrification process into the cathode solves the drawback of ammonium losses due to diffusion between compartments in the MFC, as previously reported in a system operating with external nitrification stage. This work represents the first successful attempt to combine SND and organics oxidation while producing electricity in an MFC.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>20303136</pmid><doi>10.1016/j.watres.2010.02.022</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-1354
ispartof Water research (Oxford), 2010-05, Vol.44 (9), p.2970-2980
issn 0043-1354
1879-2448
language eng
recordid cdi_proquest_miscellaneous_746148796
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Acetates
aeration
ammonia
Anodes
Applied sciences
Biochemical fuel cells
Bioelectric Energy Sources
Bioelectrochemical systems
Carbon
Carbon - isolation & purification
Cathodes
COD to N ratio
Denitrification
Effluents
Electrodes
Exact sciences and technology
fuel loading
Loop configuration
Microbial fuel cell
microbial fuel cells
Microorganisms
Nitrates
Nitrates - chemistry
Nitrification
Other industrial wastes. Sewage sludge
Oxidation-Reduction
Pollution
Quaternary Ammonium Compounds
Wastes
wastewater treatment
Water Pollutants, Chemical - chemistry
Water treatment and pollution
title Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A55%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20nitrification,%20denitrification%20and%20carbon%20removal%20in%20microbial%20fuel%20cells&rft.jtitle=Water%20research%20(Oxford)&rft.au=Virdis,%20Bernardino&rft.date=2010-05-01&rft.volume=44&rft.issue=9&rft.spage=2970&rft.epage=2980&rft.pages=2970-2980&rft.issn=0043-1354&rft.eissn=1879-2448&rft.coden=WATRAG&rft_id=info:doi/10.1016/j.watres.2010.02.022&rft_dat=%3Cproquest_cross%3E746148796%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1730057375&rft_id=info:pmid/20303136&rft_els_id=S0043135410001430&rfr_iscdi=true