Stimulation, Monitoring, and Analysis of Pathway Dynamics by Metabolic Profiling in the Aromatic Amino Acid Pathway

Using a concerted approach of biochemical standard preparation, analytical access via LC‐MS/MS, glucose pulse, metabolic profiling, and statistical data analysis, the metabolism dynamics in the aromatic amino acid pathway has been stimulated, monitored, and analyzed in different tyrosine‐auxotrophic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology progress 2004-11, Vol.20 (6), p.1623-1633
Hauptverfasser: Oldiges, M., Kunze, M., Degenring, D., Sprenger, G. A., Takors, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1633
container_issue 6
container_start_page 1623
container_title Biotechnology progress
container_volume 20
creator Oldiges, M.
Kunze, M.
Degenring, D.
Sprenger, G. A.
Takors, R.
description Using a concerted approach of biochemical standard preparation, analytical access via LC‐MS/MS, glucose pulse, metabolic profiling, and statistical data analysis, the metabolism dynamics in the aromatic amino acid pathway has been stimulated, monitored, and analyzed in different tyrosine‐auxotrophic l‐phenylalanine‐producing Escherichia coli strains. During the observation window from –4 s (before) up to 27 s after the glucose pulse, the dynamics of the first five enzymatic reactions in the aromatic amino acid pathway was observed by measuring intracellular concentrations of 3‐deoxy‐d‐arabino‐heptulosonate 7‐phosphate DAH(P), 3‐dehydroquinate (3‐DHQ), 3‐dehydroshikimate (3‐DHS), shikimate 3‐phosphate (S3P), and shikimate (SHI), together with the pathway precursors phosphoenolpyruvate (PEP) and P5P, the lumped pentose phosphate pool as an alternative to the nondetectable erythrose 4‐phosphate (E4P). Provided that a sufficient fortification of the carbon flux into the pathway of interest is ensured, respective metabolism dynamics can be observed. On the basis of the intracellular pool measurements, the standardized pool velocities were calculated, and a simple, data‐driven criterion‐called “pool efflux capacity” (PEC)‐is derived. Despite its simplifying system description, the criterion managed to identify the well‐known AroB limitation in the E. coli strain A (genotype Δ( pheA tyrA aroF)/pJF119EH aroFfbr pheAfbr amp) and it also succeeded to identify AroL and AroA (in strain B, genotype Δ( pheA tyrA aroF)/pJF119EH aroFfbr pheAfbr aroB amp) as promising metabolic engineering targets to alleviate respective flux control in subsequent l‐Phe producing strains. Furthermore, using of a simple correlation analysis, the reconstruction of the metabolite sequence of the observed pathway was enabled. The results underline the necessity to extend the focus of glucose pulse experiments by studying not only the central metabolism but also anabolic pathways.
doi_str_mv 10.1021/bp0498746
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746127074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67157040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4976-ffae6fc82a7ee9b8b211746f113fc8416977ec625d30803194452add939889083</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EotMpC14AeQMIqQH_JHa8DC3TIk3LUIpYWo7jUFPHHuyM2rx9jWaYrmB1Jd_vnKvjA8BLjN5jRPCHdo1KUfOSPQEzXBFUMETpUzCrecUKLmh9AA5T-oUQqhEjz8EBrqq8EmQG0rfRDhunRhv8MbwI3o4hWv_zGCrfwcYrNyWbYOjhSo03d2qCp5NXg9UJthO8MKNqg7MarmLorctCaD0cbwxsYhiyq4bNYH2AjbbdX4sj8KxXLpkXuzkH3xefrk_Oi-WXs88nzbLQpeCs6HtlWK9rorgxoq1bgnHO2GNM82uJmeDcaEaqjuZcFIuyrIjqOkFFXQtU0zl4u_Vdx_B7Y9IoB5u0cU55EzZJZjNMOOJlJt_8l2QcVxyVKIPvtqCOIaVoermOdlBxkhjJP13IfReZfbUz3bSD6R7J3edn4PUOUEkr10fltU2PHKOkZLm-OcBb7s46M_37ovx4vbraHy-2GptGc7_XqHibw1BeyR-XZ3Jx_nWxvCJECvoASrWuGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67157040</pqid></control><display><type>article</type><title>Stimulation, Monitoring, and Analysis of Pathway Dynamics by Metabolic Profiling in the Aromatic Amino Acid Pathway</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Oldiges, M. ; Kunze, M. ; Degenring, D. ; Sprenger, G. A. ; Takors, R.</creator><creatorcontrib>Oldiges, M. ; Kunze, M. ; Degenring, D. ; Sprenger, G. A. ; Takors, R.</creatorcontrib><description>Using a concerted approach of biochemical standard preparation, analytical access via LC‐MS/MS, glucose pulse, metabolic profiling, and statistical data analysis, the metabolism dynamics in the aromatic amino acid pathway has been stimulated, monitored, and analyzed in different tyrosine‐auxotrophic l‐phenylalanine‐producing Escherichia coli strains. During the observation window from –4 s (before) up to 27 s after the glucose pulse, the dynamics of the first five enzymatic reactions in the aromatic amino acid pathway was observed by measuring intracellular concentrations of 3‐deoxy‐d‐arabino‐heptulosonate 7‐phosphate DAH(P), 3‐dehydroquinate (3‐DHQ), 3‐dehydroshikimate (3‐DHS), shikimate 3‐phosphate (S3P), and shikimate (SHI), together with the pathway precursors phosphoenolpyruvate (PEP) and P5P, the lumped pentose phosphate pool as an alternative to the nondetectable erythrose 4‐phosphate (E4P). Provided that a sufficient fortification of the carbon flux into the pathway of interest is ensured, respective metabolism dynamics can be observed. On the basis of the intracellular pool measurements, the standardized pool velocities were calculated, and a simple, data‐driven criterion‐called “pool efflux capacity” (PEC)‐is derived. Despite its simplifying system description, the criterion managed to identify the well‐known AroB limitation in the E. coli strain A (genotype Δ( pheA tyrA aroF)/pJF119EH aroFfbr pheAfbr amp) and it also succeeded to identify AroL and AroA (in strain B, genotype Δ( pheA tyrA aroF)/pJF119EH aroFfbr pheAfbr aroB amp) as promising metabolic engineering targets to alleviate respective flux control in subsequent l‐Phe producing strains. Furthermore, using of a simple correlation analysis, the reconstruction of the metabolite sequence of the observed pathway was enabled. The results underline the necessity to extend the focus of glucose pulse experiments by studying not only the central metabolism but also anabolic pathways.</description><identifier>ISSN: 8756-7938</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1021/bp0498746</identifier><identifier>PMID: 15575692</identifier><identifier>CODEN: BIPRET</identifier><language>eng</language><publisher>USA: American Chemical Society</publisher><subject>Amino acids ; Amino Acids, Aromatic - biosynthesis ; Aromatic compounds ; Biological and medical sciences ; Biotechnology ; Chromatography, Liquid - methods ; Computer Simulation ; Escherichia coli - metabolism ; Escherichia coli Proteins - metabolism ; Fundamental and applied biological sciences. Psychology ; Gene Expression Profiling - methods ; Gene Expression Regulation, Bacterial - physiology ; Glucose - metabolism ; Kinetics ; Mass Spectrometry - methods ; Mass spectroscopy ; Mathematical models ; Metabolism ; Models, Biological ; Multienzyme Complexes - metabolism ; Phenylalanine - biosynthesis ; Q1 ; Signal Transduction - physiology ; Statistical analysis</subject><ispartof>Biotechnology progress, 2004-11, Vol.20 (6), p.1623-1633</ispartof><rights>Copyright © 2004 American Institute of Chemical Engineers (AIChE)</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4976-ffae6fc82a7ee9b8b211746f113fc8416977ec625d30803194452add939889083</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1021%2Fbp0498746$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1021%2Fbp0498746$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16324679$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15575692$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oldiges, M.</creatorcontrib><creatorcontrib>Kunze, M.</creatorcontrib><creatorcontrib>Degenring, D.</creatorcontrib><creatorcontrib>Sprenger, G. A.</creatorcontrib><creatorcontrib>Takors, R.</creatorcontrib><title>Stimulation, Monitoring, and Analysis of Pathway Dynamics by Metabolic Profiling in the Aromatic Amino Acid Pathway</title><title>Biotechnology progress</title><addtitle>Biotechnol Progress</addtitle><description>Using a concerted approach of biochemical standard preparation, analytical access via LC‐MS/MS, glucose pulse, metabolic profiling, and statistical data analysis, the metabolism dynamics in the aromatic amino acid pathway has been stimulated, monitored, and analyzed in different tyrosine‐auxotrophic l‐phenylalanine‐producing Escherichia coli strains. During the observation window from –4 s (before) up to 27 s after the glucose pulse, the dynamics of the first five enzymatic reactions in the aromatic amino acid pathway was observed by measuring intracellular concentrations of 3‐deoxy‐d‐arabino‐heptulosonate 7‐phosphate DAH(P), 3‐dehydroquinate (3‐DHQ), 3‐dehydroshikimate (3‐DHS), shikimate 3‐phosphate (S3P), and shikimate (SHI), together with the pathway precursors phosphoenolpyruvate (PEP) and P5P, the lumped pentose phosphate pool as an alternative to the nondetectable erythrose 4‐phosphate (E4P). Provided that a sufficient fortification of the carbon flux into the pathway of interest is ensured, respective metabolism dynamics can be observed. On the basis of the intracellular pool measurements, the standardized pool velocities were calculated, and a simple, data‐driven criterion‐called “pool efflux capacity” (PEC)‐is derived. Despite its simplifying system description, the criterion managed to identify the well‐known AroB limitation in the E. coli strain A (genotype Δ( pheA tyrA aroF)/pJF119EH aroFfbr pheAfbr amp) and it also succeeded to identify AroL and AroA (in strain B, genotype Δ( pheA tyrA aroF)/pJF119EH aroFfbr pheAfbr aroB amp) as promising metabolic engineering targets to alleviate respective flux control in subsequent l‐Phe producing strains. Furthermore, using of a simple correlation analysis, the reconstruction of the metabolite sequence of the observed pathway was enabled. The results underline the necessity to extend the focus of glucose pulse experiments by studying not only the central metabolism but also anabolic pathways.</description><subject>Amino acids</subject><subject>Amino Acids, Aromatic - biosynthesis</subject><subject>Aromatic compounds</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Chromatography, Liquid - methods</subject><subject>Computer Simulation</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation, Bacterial - physiology</subject><subject>Glucose - metabolism</subject><subject>Kinetics</subject><subject>Mass Spectrometry - methods</subject><subject>Mass spectroscopy</subject><subject>Mathematical models</subject><subject>Metabolism</subject><subject>Models, Biological</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Phenylalanine - biosynthesis</subject><subject>Q1</subject><subject>Signal Transduction - physiology</subject><subject>Statistical analysis</subject><issn>8756-7938</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhS0EotMpC14AeQMIqQH_JHa8DC3TIk3LUIpYWo7jUFPHHuyM2rx9jWaYrmB1Jd_vnKvjA8BLjN5jRPCHdo1KUfOSPQEzXBFUMETpUzCrecUKLmh9AA5T-oUQqhEjz8EBrqq8EmQG0rfRDhunRhv8MbwI3o4hWv_zGCrfwcYrNyWbYOjhSo03d2qCp5NXg9UJthO8MKNqg7MarmLorctCaD0cbwxsYhiyq4bNYH2AjbbdX4sj8KxXLpkXuzkH3xefrk_Oi-WXs88nzbLQpeCs6HtlWK9rorgxoq1bgnHO2GNM82uJmeDcaEaqjuZcFIuyrIjqOkFFXQtU0zl4u_Vdx_B7Y9IoB5u0cU55EzZJZjNMOOJlJt_8l2QcVxyVKIPvtqCOIaVoermOdlBxkhjJP13IfReZfbUz3bSD6R7J3edn4PUOUEkr10fltU2PHKOkZLm-OcBb7s46M_37ovx4vbraHy-2GptGc7_XqHibw1BeyR-XZ3Jx_nWxvCJECvoASrWuGA</recordid><startdate>20041101</startdate><enddate>20041101</enddate><creator>Oldiges, M.</creator><creator>Kunze, M.</creator><creator>Degenring, D.</creator><creator>Sprenger, G. A.</creator><creator>Takors, R.</creator><general>American Chemical Society</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20041101</creationdate><title>Stimulation, Monitoring, and Analysis of Pathway Dynamics by Metabolic Profiling in the Aromatic Amino Acid Pathway</title><author>Oldiges, M. ; Kunze, M. ; Degenring, D. ; Sprenger, G. A. ; Takors, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4976-ffae6fc82a7ee9b8b211746f113fc8416977ec625d30803194452add939889083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Amino acids</topic><topic>Amino Acids, Aromatic - biosynthesis</topic><topic>Aromatic compounds</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Chromatography, Liquid - methods</topic><topic>Computer Simulation</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation, Bacterial - physiology</topic><topic>Glucose - metabolism</topic><topic>Kinetics</topic><topic>Mass Spectrometry - methods</topic><topic>Mass spectroscopy</topic><topic>Mathematical models</topic><topic>Metabolism</topic><topic>Models, Biological</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Phenylalanine - biosynthesis</topic><topic>Q1</topic><topic>Signal Transduction - physiology</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oldiges, M.</creatorcontrib><creatorcontrib>Kunze, M.</creatorcontrib><creatorcontrib>Degenring, D.</creatorcontrib><creatorcontrib>Sprenger, G. A.</creatorcontrib><creatorcontrib>Takors, R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oldiges, M.</au><au>Kunze, M.</au><au>Degenring, D.</au><au>Sprenger, G. A.</au><au>Takors, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stimulation, Monitoring, and Analysis of Pathway Dynamics by Metabolic Profiling in the Aromatic Amino Acid Pathway</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Progress</addtitle><date>2004-11-01</date><risdate>2004</risdate><volume>20</volume><issue>6</issue><spage>1623</spage><epage>1633</epage><pages>1623-1633</pages><issn>8756-7938</issn><eissn>1520-6033</eissn><coden>BIPRET</coden><abstract>Using a concerted approach of biochemical standard preparation, analytical access via LC‐MS/MS, glucose pulse, metabolic profiling, and statistical data analysis, the metabolism dynamics in the aromatic amino acid pathway has been stimulated, monitored, and analyzed in different tyrosine‐auxotrophic l‐phenylalanine‐producing Escherichia coli strains. During the observation window from –4 s (before) up to 27 s after the glucose pulse, the dynamics of the first five enzymatic reactions in the aromatic amino acid pathway was observed by measuring intracellular concentrations of 3‐deoxy‐d‐arabino‐heptulosonate 7‐phosphate DAH(P), 3‐dehydroquinate (3‐DHQ), 3‐dehydroshikimate (3‐DHS), shikimate 3‐phosphate (S3P), and shikimate (SHI), together with the pathway precursors phosphoenolpyruvate (PEP) and P5P, the lumped pentose phosphate pool as an alternative to the nondetectable erythrose 4‐phosphate (E4P). Provided that a sufficient fortification of the carbon flux into the pathway of interest is ensured, respective metabolism dynamics can be observed. On the basis of the intracellular pool measurements, the standardized pool velocities were calculated, and a simple, data‐driven criterion‐called “pool efflux capacity” (PEC)‐is derived. Despite its simplifying system description, the criterion managed to identify the well‐known AroB limitation in the E. coli strain A (genotype Δ( pheA tyrA aroF)/pJF119EH aroFfbr pheAfbr amp) and it also succeeded to identify AroL and AroA (in strain B, genotype Δ( pheA tyrA aroF)/pJF119EH aroFfbr pheAfbr aroB amp) as promising metabolic engineering targets to alleviate respective flux control in subsequent l‐Phe producing strains. Furthermore, using of a simple correlation analysis, the reconstruction of the metabolite sequence of the observed pathway was enabled. The results underline the necessity to extend the focus of glucose pulse experiments by studying not only the central metabolism but also anabolic pathways.</abstract><cop>USA</cop><pub>American Chemical Society</pub><pmid>15575692</pmid><doi>10.1021/bp0498746</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 8756-7938
ispartof Biotechnology progress, 2004-11, Vol.20 (6), p.1623-1633
issn 8756-7938
1520-6033
language eng
recordid cdi_proquest_miscellaneous_746127074
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Amino acids
Amino Acids, Aromatic - biosynthesis
Aromatic compounds
Biological and medical sciences
Biotechnology
Chromatography, Liquid - methods
Computer Simulation
Escherichia coli - metabolism
Escherichia coli Proteins - metabolism
Fundamental and applied biological sciences. Psychology
Gene Expression Profiling - methods
Gene Expression Regulation, Bacterial - physiology
Glucose - metabolism
Kinetics
Mass Spectrometry - methods
Mass spectroscopy
Mathematical models
Metabolism
Models, Biological
Multienzyme Complexes - metabolism
Phenylalanine - biosynthesis
Q1
Signal Transduction - physiology
Statistical analysis
title Stimulation, Monitoring, and Analysis of Pathway Dynamics by Metabolic Profiling in the Aromatic Amino Acid Pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A35%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stimulation,%20Monitoring,%20and%20Analysis%20of%20Pathway%20Dynamics%20by%20Metabolic%20Profiling%20in%20the%20Aromatic%20Amino%20Acid%20Pathway&rft.jtitle=Biotechnology%20progress&rft.au=Oldiges,%20M.&rft.date=2004-11-01&rft.volume=20&rft.issue=6&rft.spage=1623&rft.epage=1633&rft.pages=1623-1633&rft.issn=8756-7938&rft.eissn=1520-6033&rft.coden=BIPRET&rft_id=info:doi/10.1021/bp0498746&rft_dat=%3Cproquest_cross%3E67157040%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67157040&rft_id=info:pmid/15575692&rfr_iscdi=true