Stress intensity factor evaluation from displacements along arbitrary crack tip radial lines for warped surface flaws

A procedure has been developed to calculate the stress intensity factors from the displacements along any arbitrary crack tip radial line on a quarter-point singular finite element boundary. This procedure enables the conventional finite element method to handle surface and one-dimensional flaws wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering fracture mechanics 1989, Vol.32 (5), p.723-730
1. Verfasser: Rhee, H.Chong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 730
container_issue 5
container_start_page 723
container_title Engineering fracture mechanics
container_volume 32
creator Rhee, H.Chong
description A procedure has been developed to calculate the stress intensity factors from the displacements along any arbitrary crack tip radial line on a quarter-point singular finite element boundary. This procedure enables the conventional finite element method to handle surface and one-dimensional flaws with curved crack lines. The common conversion method which uses the displacements along the crack surfaces is not valid for a flaw with curved crack lines. The developed procedure was validated by analysing an angled edge crack in a flat plate under tension and a weld toe surface flaw in an X-shaped tubular joint under tension and bending loads. This method can also provide a means to assess the accuracy of the stress intensity factor solutions of complex crack geometries through a comparison of the solutions evaluated at variously different angular locations. This paper revealed that when a structural geometry is complex in such a way that the proper binormal plane cannot be defined at the surface crack front points of a finite element mesh of a surface crack, the stress intensity factor cannot easily be calculated at these points by using the conventional finite element method. In this case, it is necessary to use some form of hybrid finite element with built-in crack-tip singularities.
doi_str_mv 10.1016/0013-7944(89)90168-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746105079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0013794489901689</els_id><sourcerecordid>25487528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-eafe140f0285aa35811aeb938bf36b57bd9b1678bac7ff0846415635044980773</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMoOK7-Aw85iLqH1mQ6nxdBFleFBQ_qOVSnKxLNdLep9C777-1xlj3uqeDlqafgLcZeSvFOCmneCyH7znql3jp_7rfEdf4R20lnt7iX-jHb3SNP2TOi30IIa5zYsfV7q0jE89RwotxueYLY5srxGsoKLc8TT3U-8DHTUiDiAadGHMo8_eJQh9wq1FseK8Q_vOWFVxgzFF7yhMTTJrqBuuDIaa2bGXkqcEPP2ZMEhfDF3TxjPy8__bj40l19-_z14uNVF3tvWoeQUCqRxN5pgF47KQEH37sh9WbQdhj9II11A0SbknDKKKlNr4VS3glr-zP25uRd6vx3RWrhkCliKTDhvFKwykihhfUb-fpBcq-Vs3rvNlCdwFhnooopLDUftg6CFOH4jXCsOhyrDs6H_98IR_-rOz9QhJIqTDHT_a7xRlojN-zDCcOtleuMNVDMOEUcc8XYwjjnh-_8A8OVn4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25487528</pqid></control><display><type>article</type><title>Stress intensity factor evaluation from displacements along arbitrary crack tip radial lines for warped surface flaws</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Rhee, H.Chong</creator><creatorcontrib>Rhee, H.Chong</creatorcontrib><description>A procedure has been developed to calculate the stress intensity factors from the displacements along any arbitrary crack tip radial line on a quarter-point singular finite element boundary. This procedure enables the conventional finite element method to handle surface and one-dimensional flaws with curved crack lines. The common conversion method which uses the displacements along the crack surfaces is not valid for a flaw with curved crack lines. The developed procedure was validated by analysing an angled edge crack in a flat plate under tension and a weld toe surface flaw in an X-shaped tubular joint under tension and bending loads. This method can also provide a means to assess the accuracy of the stress intensity factor solutions of complex crack geometries through a comparison of the solutions evaluated at variously different angular locations. This paper revealed that when a structural geometry is complex in such a way that the proper binormal plane cannot be defined at the surface crack front points of a finite element mesh of a surface crack, the stress intensity factor cannot easily be calculated at these points by using the conventional finite element method. In this case, it is necessary to use some form of hybrid finite element with built-in crack-tip singularities.</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/0013-7944(89)90168-9</identifier><identifier>CODEN: EFMEAH</identifier><language>eng</language><publisher>Tarrytown, NY: Elsevier Ltd</publisher><subject>cracks ; Exact sciences and technology ; finite element method ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; stress intensity factor ; Structural and continuum mechanics</subject><ispartof>Engineering fracture mechanics, 1989, Vol.32 (5), p.723-730</ispartof><rights>1989</rights><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-eafe140f0285aa35811aeb938bf36b57bd9b1678bac7ff0846415635044980773</citedby><cites>FETCH-LOGICAL-c396t-eafe140f0285aa35811aeb938bf36b57bd9b1678bac7ff0846415635044980773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0013-7944(89)90168-9$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6961761$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rhee, H.Chong</creatorcontrib><title>Stress intensity factor evaluation from displacements along arbitrary crack tip radial lines for warped surface flaws</title><title>Engineering fracture mechanics</title><description>A procedure has been developed to calculate the stress intensity factors from the displacements along any arbitrary crack tip radial line on a quarter-point singular finite element boundary. This procedure enables the conventional finite element method to handle surface and one-dimensional flaws with curved crack lines. The common conversion method which uses the displacements along the crack surfaces is not valid for a flaw with curved crack lines. The developed procedure was validated by analysing an angled edge crack in a flat plate under tension and a weld toe surface flaw in an X-shaped tubular joint under tension and bending loads. This method can also provide a means to assess the accuracy of the stress intensity factor solutions of complex crack geometries through a comparison of the solutions evaluated at variously different angular locations. This paper revealed that when a structural geometry is complex in such a way that the proper binormal plane cannot be defined at the surface crack front points of a finite element mesh of a surface crack, the stress intensity factor cannot easily be calculated at these points by using the conventional finite element method. In this case, it is necessary to use some form of hybrid finite element with built-in crack-tip singularities.</description><subject>cracks</subject><subject>Exact sciences and technology</subject><subject>finite element method</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>stress intensity factor</subject><subject>Structural and continuum mechanics</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNp9kU2LFDEQhoMoOK7-Aw85iLqH1mQ6nxdBFleFBQ_qOVSnKxLNdLep9C777-1xlj3uqeDlqafgLcZeSvFOCmneCyH7znql3jp_7rfEdf4R20lnt7iX-jHb3SNP2TOi30IIa5zYsfV7q0jE89RwotxueYLY5srxGsoKLc8TT3U-8DHTUiDiAadGHMo8_eJQh9wq1FseK8Q_vOWFVxgzFF7yhMTTJrqBuuDIaa2bGXkqcEPP2ZMEhfDF3TxjPy8__bj40l19-_z14uNVF3tvWoeQUCqRxN5pgF47KQEH37sh9WbQdhj9II11A0SbknDKKKlNr4VS3glr-zP25uRd6vx3RWrhkCliKTDhvFKwykihhfUb-fpBcq-Vs3rvNlCdwFhnooopLDUftg6CFOH4jXCsOhyrDs6H_98IR_-rOz9QhJIqTDHT_a7xRlojN-zDCcOtleuMNVDMOEUcc8XYwjjnh-_8A8OVn4g</recordid><startdate>1989</startdate><enddate>1989</enddate><creator>Rhee, H.Chong</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TC</scope></search><sort><creationdate>1989</creationdate><title>Stress intensity factor evaluation from displacements along arbitrary crack tip radial lines for warped surface flaws</title><author>Rhee, H.Chong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-eafe140f0285aa35811aeb938bf36b57bd9b1678bac7ff0846415635044980773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>cracks</topic><topic>Exact sciences and technology</topic><topic>finite element method</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>stress intensity factor</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rhee, H.Chong</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rhee, H.Chong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress intensity factor evaluation from displacements along arbitrary crack tip radial lines for warped surface flaws</atitle><jtitle>Engineering fracture mechanics</jtitle><date>1989</date><risdate>1989</risdate><volume>32</volume><issue>5</issue><spage>723</spage><epage>730</epage><pages>723-730</pages><issn>0013-7944</issn><eissn>1873-7315</eissn><coden>EFMEAH</coden><abstract>A procedure has been developed to calculate the stress intensity factors from the displacements along any arbitrary crack tip radial line on a quarter-point singular finite element boundary. This procedure enables the conventional finite element method to handle surface and one-dimensional flaws with curved crack lines. The common conversion method which uses the displacements along the crack surfaces is not valid for a flaw with curved crack lines. The developed procedure was validated by analysing an angled edge crack in a flat plate under tension and a weld toe surface flaw in an X-shaped tubular joint under tension and bending loads. This method can also provide a means to assess the accuracy of the stress intensity factor solutions of complex crack geometries through a comparison of the solutions evaluated at variously different angular locations. This paper revealed that when a structural geometry is complex in such a way that the proper binormal plane cannot be defined at the surface crack front points of a finite element mesh of a surface crack, the stress intensity factor cannot easily be calculated at these points by using the conventional finite element method. In this case, it is necessary to use some form of hybrid finite element with built-in crack-tip singularities.</abstract><cop>Tarrytown, NY</cop><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0013-7944(89)90168-9</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-7944
ispartof Engineering fracture mechanics, 1989, Vol.32 (5), p.723-730
issn 0013-7944
1873-7315
language eng
recordid cdi_proquest_miscellaneous_746105079
source ScienceDirect Journals (5 years ago - present)
subjects cracks
Exact sciences and technology
finite element method
Fracture mechanics (crack, fatigue, damage...)
Fundamental areas of phenomenology (including applications)
Physics
Solid mechanics
stress intensity factor
Structural and continuum mechanics
title Stress intensity factor evaluation from displacements along arbitrary crack tip radial lines for warped surface flaws
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A30%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress%20intensity%20factor%20evaluation%20from%20displacements%20along%20arbitrary%20crack%20tip%20radial%20lines%20for%20warped%20surface%20flaws&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=Rhee,%20H.Chong&rft.date=1989&rft.volume=32&rft.issue=5&rft.spage=723&rft.epage=730&rft.pages=723-730&rft.issn=0013-7944&rft.eissn=1873-7315&rft.coden=EFMEAH&rft_id=info:doi/10.1016/0013-7944(89)90168-9&rft_dat=%3Cproquest_cross%3E25487528%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25487528&rft_id=info:pmid/&rft_els_id=0013794489901689&rfr_iscdi=true