Tool wear estimation in micro-machining.: Part II: neural-network-based periodic inspector for non-metals

Cutting forces are small, and in many cases insignificant, compared with noise during the micro-machining of many non-metals. The Neural-Network-based Periodic Tool Inspector (N 2PTI) is introduced to evaluate tool condition periodically on a test piece during the machining of non-metal workpieces....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of machine tools & manufacture 2000, Vol.40 (4), p.609-620
Hauptverfasser: Tansel, I.N., Arkan, T.T., Bao, W.Y., Mahendrakar, N., Shisler, B., Smith, D., McCool, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 620
container_issue 4
container_start_page 609
container_title International journal of machine tools & manufacture
container_volume 40
creator Tansel, I.N.
Arkan, T.T.
Bao, W.Y.
Mahendrakar, N.
Shisler, B.
Smith, D.
McCool, M.
description Cutting forces are small, and in many cases insignificant, compared with noise during the micro-machining of many non-metals. The Neural-Network-based Periodic Tool Inspector (N 2PTI) is introduced to evaluate tool condition periodically on a test piece during the machining of non-metal workpieces. The cutting forces are measured when a slot is being cut on the test piece and the neural network estimates the tool life from the variation of the feed- and thrust-direction cutting forces. The performances of three encoding methods (force variation, segmental averaging and wavelet transformations) and two neural networks [backpropagation (BP) and probabilistic neural network (PNN)] are compared. The advantages of N 2PTI are simplicity, low cost, reliability and simple computational requirements.
doi_str_mv 10.1016/S0890-6955(99)00074-7
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_746090431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0890695599000747</els_id><sourcerecordid>746090431</sourcerecordid><originalsourceid>FETCH-LOGICAL-e216t-30c353f10f398895dda39679805460ec3b832a5d3813e3a3c30166975ab1554c3</originalsourceid><addsrcrecordid>eNp9kU9rGzEUxEVoIG7SjxDQobTJQY60b7Va5VJKyB9DIIGmZyFr36ZqdyVXWsf020e2Q485PObyewMzQ8ip4HPBRXPxg7eas0ZLeab1Oedc1UwdkJlolWaVUPwDmf1HjsjHnH8XSLQgZsQ_xTjQDdpEMU9-tJOPgfpAR-9SZKN1v3zw4Xl-SR9tmuhicUkDrpMdWMBpE9MftrQZO7rC5GPnXfnNK3RTTLQvF2JgI052yCfksC-Cn970mPy8uX66umP3D7eLq-_3DCvRTAy4Awm94D3ottWy6yzoRumWy7rh6GDZQmVlB60ABAsOSgWNVtIuhZS1g2Pyde-7SvHvuoQyo88Oh8EGjOtsVLHRvAZRyC_vkpVSCirVFPDzG2izs0OfbHA-m1UqfaV_RlRV3dRbv297DEu8F4_JZOcxOOx8Ko2YLnojuNluZnabme0gRmuz28woeAUu9omQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27773276</pqid></control><display><type>article</type><title>Tool wear estimation in micro-machining.: Part II: neural-network-based periodic inspector for non-metals</title><source>Elsevier ScienceDirect Journals</source><creator>Tansel, I.N. ; Arkan, T.T. ; Bao, W.Y. ; Mahendrakar, N. ; Shisler, B. ; Smith, D. ; McCool, M.</creator><creatorcontrib>Tansel, I.N. ; Arkan, T.T. ; Bao, W.Y. ; Mahendrakar, N. ; Shisler, B. ; Smith, D. ; McCool, M.</creatorcontrib><description>Cutting forces are small, and in many cases insignificant, compared with noise during the micro-machining of many non-metals. The Neural-Network-based Periodic Tool Inspector (N 2PTI) is introduced to evaluate tool condition periodically on a test piece during the machining of non-metal workpieces. The cutting forces are measured when a slot is being cut on the test piece and the neural network estimates the tool life from the variation of the feed- and thrust-direction cutting forces. The performances of three encoding methods (force variation, segmental averaging and wavelet transformations) and two neural networks [backpropagation (BP) and probabilistic neural network (PNN)] are compared. The advantages of N 2PTI are simplicity, low cost, reliability and simple computational requirements.</description><identifier>ISSN: 0890-6955</identifier><identifier>EISSN: 1879-2170</identifier><identifier>DOI: 10.1016/S0890-6955(99)00074-7</identifier><identifier>CODEN: IMTME3</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Backpropagation ; Cutting tools ; End-mill ; Exact sciences and technology ; Industrial metrology. Testing ; Mechanical engineering. Machine design ; Micro-machining ; Micro-tool ; Micromachining ; Milling ; Milling (machining) ; Monitoring ; Neural network ; Neural networks ; Non-metal ; Precision engineering, watch making ; Probabilistic logics ; Wavelet transformation ; Wavelet transforms ; Wear ; Wear of materials</subject><ispartof>International journal of machine tools &amp; manufacture, 2000, Vol.40 (4), p.609-620</ispartof><rights>1999 Elsevier Science Ltd</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0890695599000747$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1224641$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tansel, I.N.</creatorcontrib><creatorcontrib>Arkan, T.T.</creatorcontrib><creatorcontrib>Bao, W.Y.</creatorcontrib><creatorcontrib>Mahendrakar, N.</creatorcontrib><creatorcontrib>Shisler, B.</creatorcontrib><creatorcontrib>Smith, D.</creatorcontrib><creatorcontrib>McCool, M.</creatorcontrib><title>Tool wear estimation in micro-machining.: Part II: neural-network-based periodic inspector for non-metals</title><title>International journal of machine tools &amp; manufacture</title><description>Cutting forces are small, and in many cases insignificant, compared with noise during the micro-machining of many non-metals. The Neural-Network-based Periodic Tool Inspector (N 2PTI) is introduced to evaluate tool condition periodically on a test piece during the machining of non-metal workpieces. The cutting forces are measured when a slot is being cut on the test piece and the neural network estimates the tool life from the variation of the feed- and thrust-direction cutting forces. The performances of three encoding methods (force variation, segmental averaging and wavelet transformations) and two neural networks [backpropagation (BP) and probabilistic neural network (PNN)] are compared. The advantages of N 2PTI are simplicity, low cost, reliability and simple computational requirements.</description><subject>Applied sciences</subject><subject>Backpropagation</subject><subject>Cutting tools</subject><subject>End-mill</subject><subject>Exact sciences and technology</subject><subject>Industrial metrology. Testing</subject><subject>Mechanical engineering. Machine design</subject><subject>Micro-machining</subject><subject>Micro-tool</subject><subject>Micromachining</subject><subject>Milling</subject><subject>Milling (machining)</subject><subject>Monitoring</subject><subject>Neural network</subject><subject>Neural networks</subject><subject>Non-metal</subject><subject>Precision engineering, watch making</subject><subject>Probabilistic logics</subject><subject>Wavelet transformation</subject><subject>Wavelet transforms</subject><subject>Wear</subject><subject>Wear of materials</subject><issn>0890-6955</issn><issn>1879-2170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp9kU9rGzEUxEVoIG7SjxDQobTJQY60b7Va5VJKyB9DIIGmZyFr36ZqdyVXWsf020e2Q485PObyewMzQ8ip4HPBRXPxg7eas0ZLeab1Oedc1UwdkJlolWaVUPwDmf1HjsjHnH8XSLQgZsQ_xTjQDdpEMU9-tJOPgfpAR-9SZKN1v3zw4Xl-SR9tmuhicUkDrpMdWMBpE9MftrQZO7rC5GPnXfnNK3RTTLQvF2JgI052yCfksC-Cn970mPy8uX66umP3D7eLq-_3DCvRTAy4Awm94D3ottWy6yzoRumWy7rh6GDZQmVlB60ABAsOSgWNVtIuhZS1g2Pyde-7SvHvuoQyo88Oh8EGjOtsVLHRvAZRyC_vkpVSCirVFPDzG2izs0OfbHA-m1UqfaV_RlRV3dRbv297DEu8F4_JZOcxOOx8Ko2YLnojuNluZnabme0gRmuz28woeAUu9omQ</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Tansel, I.N.</creator><creator>Arkan, T.T.</creator><creator>Bao, W.Y.</creator><creator>Mahendrakar, N.</creator><creator>Shisler, B.</creator><creator>Smith, D.</creator><creator>McCool, M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>7TC</scope></search><sort><creationdate>2000</creationdate><title>Tool wear estimation in micro-machining.: Part II: neural-network-based periodic inspector for non-metals</title><author>Tansel, I.N. ; Arkan, T.T. ; Bao, W.Y. ; Mahendrakar, N. ; Shisler, B. ; Smith, D. ; McCool, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e216t-30c353f10f398895dda39679805460ec3b832a5d3813e3a3c30166975ab1554c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Backpropagation</topic><topic>Cutting tools</topic><topic>End-mill</topic><topic>Exact sciences and technology</topic><topic>Industrial metrology. Testing</topic><topic>Mechanical engineering. Machine design</topic><topic>Micro-machining</topic><topic>Micro-tool</topic><topic>Micromachining</topic><topic>Milling</topic><topic>Milling (machining)</topic><topic>Monitoring</topic><topic>Neural network</topic><topic>Neural networks</topic><topic>Non-metal</topic><topic>Precision engineering, watch making</topic><topic>Probabilistic logics</topic><topic>Wavelet transformation</topic><topic>Wavelet transforms</topic><topic>Wear</topic><topic>Wear of materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tansel, I.N.</creatorcontrib><creatorcontrib>Arkan, T.T.</creatorcontrib><creatorcontrib>Bao, W.Y.</creatorcontrib><creatorcontrib>Mahendrakar, N.</creatorcontrib><creatorcontrib>Shisler, B.</creatorcontrib><creatorcontrib>Smith, D.</creatorcontrib><creatorcontrib>McCool, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>International journal of machine tools &amp; manufacture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tansel, I.N.</au><au>Arkan, T.T.</au><au>Bao, W.Y.</au><au>Mahendrakar, N.</au><au>Shisler, B.</au><au>Smith, D.</au><au>McCool, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tool wear estimation in micro-machining.: Part II: neural-network-based periodic inspector for non-metals</atitle><jtitle>International journal of machine tools &amp; manufacture</jtitle><date>2000</date><risdate>2000</risdate><volume>40</volume><issue>4</issue><spage>609</spage><epage>620</epage><pages>609-620</pages><issn>0890-6955</issn><eissn>1879-2170</eissn><coden>IMTME3</coden><abstract>Cutting forces are small, and in many cases insignificant, compared with noise during the micro-machining of many non-metals. The Neural-Network-based Periodic Tool Inspector (N 2PTI) is introduced to evaluate tool condition periodically on a test piece during the machining of non-metal workpieces. The cutting forces are measured when a slot is being cut on the test piece and the neural network estimates the tool life from the variation of the feed- and thrust-direction cutting forces. The performances of three encoding methods (force variation, segmental averaging and wavelet transformations) and two neural networks [backpropagation (BP) and probabilistic neural network (PNN)] are compared. The advantages of N 2PTI are simplicity, low cost, reliability and simple computational requirements.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0890-6955(99)00074-7</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0890-6955
ispartof International journal of machine tools & manufacture, 2000, Vol.40 (4), p.609-620
issn 0890-6955
1879-2170
language eng
recordid cdi_proquest_miscellaneous_746090431
source Elsevier ScienceDirect Journals
subjects Applied sciences
Backpropagation
Cutting tools
End-mill
Exact sciences and technology
Industrial metrology. Testing
Mechanical engineering. Machine design
Micro-machining
Micro-tool
Micromachining
Milling
Milling (machining)
Monitoring
Neural network
Neural networks
Non-metal
Precision engineering, watch making
Probabilistic logics
Wavelet transformation
Wavelet transforms
Wear
Wear of materials
title Tool wear estimation in micro-machining.: Part II: neural-network-based periodic inspector for non-metals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A56%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tool%20wear%20estimation%20in%20micro-machining.:%20Part%20II:%20neural-network-based%20periodic%20inspector%20for%20non-metals&rft.jtitle=International%20journal%20of%20machine%20tools%20&%20manufacture&rft.au=Tansel,%20I.N.&rft.date=2000&rft.volume=40&rft.issue=4&rft.spage=609&rft.epage=620&rft.pages=609-620&rft.issn=0890-6955&rft.eissn=1879-2170&rft.coden=IMTME3&rft_id=info:doi/10.1016/S0890-6955(99)00074-7&rft_dat=%3Cproquest_pasca%3E746090431%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27773276&rft_id=info:pmid/&rft_els_id=S0890695599000747&rfr_iscdi=true