Tool wear estimation in micro-machining.: Part II: neural-network-based periodic inspector for non-metals
Cutting forces are small, and in many cases insignificant, compared with noise during the micro-machining of many non-metals. The Neural-Network-based Periodic Tool Inspector (N 2PTI) is introduced to evaluate tool condition periodically on a test piece during the machining of non-metal workpieces....
Gespeichert in:
Veröffentlicht in: | International journal of machine tools & manufacture 2000, Vol.40 (4), p.609-620 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 620 |
---|---|
container_issue | 4 |
container_start_page | 609 |
container_title | International journal of machine tools & manufacture |
container_volume | 40 |
creator | Tansel, I.N. Arkan, T.T. Bao, W.Y. Mahendrakar, N. Shisler, B. Smith, D. McCool, M. |
description | Cutting forces are small, and in many cases insignificant, compared with noise during the micro-machining of many non-metals. The Neural-Network-based Periodic Tool Inspector (N
2PTI) is introduced to evaluate tool condition periodically on a test piece during the machining of non-metal workpieces. The cutting forces are measured when a slot is being cut on the test piece and the neural network estimates the tool life from the variation of the feed- and thrust-direction cutting forces. The performances of three encoding methods (force variation, segmental averaging and wavelet transformations) and two neural networks [backpropagation (BP) and probabilistic neural network (PNN)] are compared. The advantages of N
2PTI are simplicity, low cost, reliability and simple computational requirements. |
doi_str_mv | 10.1016/S0890-6955(99)00074-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_746090431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0890695599000747</els_id><sourcerecordid>746090431</sourcerecordid><originalsourceid>FETCH-LOGICAL-e216t-30c353f10f398895dda39679805460ec3b832a5d3813e3a3c30166975ab1554c3</originalsourceid><addsrcrecordid>eNp9kU9rGzEUxEVoIG7SjxDQobTJQY60b7Va5VJKyB9DIIGmZyFr36ZqdyVXWsf020e2Q485PObyewMzQ8ip4HPBRXPxg7eas0ZLeab1Oedc1UwdkJlolWaVUPwDmf1HjsjHnH8XSLQgZsQ_xTjQDdpEMU9-tJOPgfpAR-9SZKN1v3zw4Xl-SR9tmuhicUkDrpMdWMBpE9MftrQZO7rC5GPnXfnNK3RTTLQvF2JgI052yCfksC-Cn970mPy8uX66umP3D7eLq-_3DCvRTAy4Awm94D3ottWy6yzoRumWy7rh6GDZQmVlB60ABAsOSgWNVtIuhZS1g2Pyde-7SvHvuoQyo88Oh8EGjOtsVLHRvAZRyC_vkpVSCirVFPDzG2izs0OfbHA-m1UqfaV_RlRV3dRbv297DEu8F4_JZOcxOOx8Ko2YLnojuNluZnabme0gRmuz28woeAUu9omQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27773276</pqid></control><display><type>article</type><title>Tool wear estimation in micro-machining.: Part II: neural-network-based periodic inspector for non-metals</title><source>Elsevier ScienceDirect Journals</source><creator>Tansel, I.N. ; Arkan, T.T. ; Bao, W.Y. ; Mahendrakar, N. ; Shisler, B. ; Smith, D. ; McCool, M.</creator><creatorcontrib>Tansel, I.N. ; Arkan, T.T. ; Bao, W.Y. ; Mahendrakar, N. ; Shisler, B. ; Smith, D. ; McCool, M.</creatorcontrib><description>Cutting forces are small, and in many cases insignificant, compared with noise during the micro-machining of many non-metals. The Neural-Network-based Periodic Tool Inspector (N
2PTI) is introduced to evaluate tool condition periodically on a test piece during the machining of non-metal workpieces. The cutting forces are measured when a slot is being cut on the test piece and the neural network estimates the tool life from the variation of the feed- and thrust-direction cutting forces. The performances of three encoding methods (force variation, segmental averaging and wavelet transformations) and two neural networks [backpropagation (BP) and probabilistic neural network (PNN)] are compared. The advantages of N
2PTI are simplicity, low cost, reliability and simple computational requirements.</description><identifier>ISSN: 0890-6955</identifier><identifier>EISSN: 1879-2170</identifier><identifier>DOI: 10.1016/S0890-6955(99)00074-7</identifier><identifier>CODEN: IMTME3</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Backpropagation ; Cutting tools ; End-mill ; Exact sciences and technology ; Industrial metrology. Testing ; Mechanical engineering. Machine design ; Micro-machining ; Micro-tool ; Micromachining ; Milling ; Milling (machining) ; Monitoring ; Neural network ; Neural networks ; Non-metal ; Precision engineering, watch making ; Probabilistic logics ; Wavelet transformation ; Wavelet transforms ; Wear ; Wear of materials</subject><ispartof>International journal of machine tools & manufacture, 2000, Vol.40 (4), p.609-620</ispartof><rights>1999 Elsevier Science Ltd</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0890695599000747$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1224641$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tansel, I.N.</creatorcontrib><creatorcontrib>Arkan, T.T.</creatorcontrib><creatorcontrib>Bao, W.Y.</creatorcontrib><creatorcontrib>Mahendrakar, N.</creatorcontrib><creatorcontrib>Shisler, B.</creatorcontrib><creatorcontrib>Smith, D.</creatorcontrib><creatorcontrib>McCool, M.</creatorcontrib><title>Tool wear estimation in micro-machining.: Part II: neural-network-based periodic inspector for non-metals</title><title>International journal of machine tools & manufacture</title><description>Cutting forces are small, and in many cases insignificant, compared with noise during the micro-machining of many non-metals. The Neural-Network-based Periodic Tool Inspector (N
2PTI) is introduced to evaluate tool condition periodically on a test piece during the machining of non-metal workpieces. The cutting forces are measured when a slot is being cut on the test piece and the neural network estimates the tool life from the variation of the feed- and thrust-direction cutting forces. The performances of three encoding methods (force variation, segmental averaging and wavelet transformations) and two neural networks [backpropagation (BP) and probabilistic neural network (PNN)] are compared. The advantages of N
2PTI are simplicity, low cost, reliability and simple computational requirements.</description><subject>Applied sciences</subject><subject>Backpropagation</subject><subject>Cutting tools</subject><subject>End-mill</subject><subject>Exact sciences and technology</subject><subject>Industrial metrology. Testing</subject><subject>Mechanical engineering. Machine design</subject><subject>Micro-machining</subject><subject>Micro-tool</subject><subject>Micromachining</subject><subject>Milling</subject><subject>Milling (machining)</subject><subject>Monitoring</subject><subject>Neural network</subject><subject>Neural networks</subject><subject>Non-metal</subject><subject>Precision engineering, watch making</subject><subject>Probabilistic logics</subject><subject>Wavelet transformation</subject><subject>Wavelet transforms</subject><subject>Wear</subject><subject>Wear of materials</subject><issn>0890-6955</issn><issn>1879-2170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp9kU9rGzEUxEVoIG7SjxDQobTJQY60b7Va5VJKyB9DIIGmZyFr36ZqdyVXWsf020e2Q485PObyewMzQ8ip4HPBRXPxg7eas0ZLeab1Oedc1UwdkJlolWaVUPwDmf1HjsjHnH8XSLQgZsQ_xTjQDdpEMU9-tJOPgfpAR-9SZKN1v3zw4Xl-SR9tmuhicUkDrpMdWMBpE9MftrQZO7rC5GPnXfnNK3RTTLQvF2JgI052yCfksC-Cn970mPy8uX66umP3D7eLq-_3DCvRTAy4Awm94D3ottWy6yzoRumWy7rh6GDZQmVlB60ABAsOSgWNVtIuhZS1g2Pyde-7SvHvuoQyo88Oh8EGjOtsVLHRvAZRyC_vkpVSCirVFPDzG2izs0OfbHA-m1UqfaV_RlRV3dRbv297DEu8F4_JZOcxOOx8Ko2YLnojuNluZnabme0gRmuz28woeAUu9omQ</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Tansel, I.N.</creator><creator>Arkan, T.T.</creator><creator>Bao, W.Y.</creator><creator>Mahendrakar, N.</creator><creator>Shisler, B.</creator><creator>Smith, D.</creator><creator>McCool, M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>7TC</scope></search><sort><creationdate>2000</creationdate><title>Tool wear estimation in micro-machining.: Part II: neural-network-based periodic inspector for non-metals</title><author>Tansel, I.N. ; Arkan, T.T. ; Bao, W.Y. ; Mahendrakar, N. ; Shisler, B. ; Smith, D. ; McCool, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e216t-30c353f10f398895dda39679805460ec3b832a5d3813e3a3c30166975ab1554c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Backpropagation</topic><topic>Cutting tools</topic><topic>End-mill</topic><topic>Exact sciences and technology</topic><topic>Industrial metrology. Testing</topic><topic>Mechanical engineering. Machine design</topic><topic>Micro-machining</topic><topic>Micro-tool</topic><topic>Micromachining</topic><topic>Milling</topic><topic>Milling (machining)</topic><topic>Monitoring</topic><topic>Neural network</topic><topic>Neural networks</topic><topic>Non-metal</topic><topic>Precision engineering, watch making</topic><topic>Probabilistic logics</topic><topic>Wavelet transformation</topic><topic>Wavelet transforms</topic><topic>Wear</topic><topic>Wear of materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tansel, I.N.</creatorcontrib><creatorcontrib>Arkan, T.T.</creatorcontrib><creatorcontrib>Bao, W.Y.</creatorcontrib><creatorcontrib>Mahendrakar, N.</creatorcontrib><creatorcontrib>Shisler, B.</creatorcontrib><creatorcontrib>Smith, D.</creatorcontrib><creatorcontrib>McCool, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>International journal of machine tools & manufacture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tansel, I.N.</au><au>Arkan, T.T.</au><au>Bao, W.Y.</au><au>Mahendrakar, N.</au><au>Shisler, B.</au><au>Smith, D.</au><au>McCool, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tool wear estimation in micro-machining.: Part II: neural-network-based periodic inspector for non-metals</atitle><jtitle>International journal of machine tools & manufacture</jtitle><date>2000</date><risdate>2000</risdate><volume>40</volume><issue>4</issue><spage>609</spage><epage>620</epage><pages>609-620</pages><issn>0890-6955</issn><eissn>1879-2170</eissn><coden>IMTME3</coden><abstract>Cutting forces are small, and in many cases insignificant, compared with noise during the micro-machining of many non-metals. The Neural-Network-based Periodic Tool Inspector (N
2PTI) is introduced to evaluate tool condition periodically on a test piece during the machining of non-metal workpieces. The cutting forces are measured when a slot is being cut on the test piece and the neural network estimates the tool life from the variation of the feed- and thrust-direction cutting forces. The performances of three encoding methods (force variation, segmental averaging and wavelet transformations) and two neural networks [backpropagation (BP) and probabilistic neural network (PNN)] are compared. The advantages of N
2PTI are simplicity, low cost, reliability and simple computational requirements.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0890-6955(99)00074-7</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0890-6955 |
ispartof | International journal of machine tools & manufacture, 2000, Vol.40 (4), p.609-620 |
issn | 0890-6955 1879-2170 |
language | eng |
recordid | cdi_proquest_miscellaneous_746090431 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Backpropagation Cutting tools End-mill Exact sciences and technology Industrial metrology. Testing Mechanical engineering. Machine design Micro-machining Micro-tool Micromachining Milling Milling (machining) Monitoring Neural network Neural networks Non-metal Precision engineering, watch making Probabilistic logics Wavelet transformation Wavelet transforms Wear Wear of materials |
title | Tool wear estimation in micro-machining.: Part II: neural-network-based periodic inspector for non-metals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A56%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tool%20wear%20estimation%20in%20micro-machining.:%20Part%20II:%20neural-network-based%20periodic%20inspector%20for%20non-metals&rft.jtitle=International%20journal%20of%20machine%20tools%20&%20manufacture&rft.au=Tansel,%20I.N.&rft.date=2000&rft.volume=40&rft.issue=4&rft.spage=609&rft.epage=620&rft.pages=609-620&rft.issn=0890-6955&rft.eissn=1879-2170&rft.coden=IMTME3&rft_id=info:doi/10.1016/S0890-6955(99)00074-7&rft_dat=%3Cproquest_pasca%3E746090431%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27773276&rft_id=info:pmid/&rft_els_id=S0890695599000747&rfr_iscdi=true |