Rpd3L HDAC complex is essential for the heat stress response in yeast
To ensure cell survival and growth during temperature increase, eukaryotic organisms respond with transcriptional activation that results in accumulation of proteins that protect against damage and facilitate recovery. To define the global cellular adaptation response to heat stress, we performed a...
Gespeichert in:
Veröffentlicht in: | Molecular microbiology 2010-05, Vol.76 (4), p.1049-1062 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1062 |
---|---|
container_issue | 4 |
container_start_page | 1049 |
container_title | Molecular microbiology |
container_volume | 76 |
creator | Ruiz-Roig, Clàudia Viéitez, Cristina Posas, Francesc de Nadal, Eulàlia |
description | To ensure cell survival and growth during temperature increase, eukaryotic organisms respond with transcriptional activation that results in accumulation of proteins that protect against damage and facilitate recovery. To define the global cellular adaptation response to heat stress, we performed a systematic genetic screen that yielded 277 yeast genes required for growth at high temperature. Of these, the Rpd3 histone deacetylase complex was enriched. Global gene expression analysis showed that Rpd3 partially regulated gene expression upon heat shock. The Hsf1 and Msn2/4 transcription factors are the main regulators of gene activation in response to heat stress. RPD3-deficient cells had impaired activation of Msn2/4-dependent genes, while activation of genes controlled by Hsf1 was deacetylase-independent. Rpd3 bound to heat stress-dependent promoters through the Msn2/4 transcription factors, allowing entry of RNA Pol II and activation of transcription upon stress. Finally, we found that the large, but not the small Rpd3 complex regulated cell adaptation in response to heat stress. |
doi_str_mv | 10.1111/j.1365-2958.2010.07167.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746086670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>746086670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5977-e04480e724519cc7f0b731a60bfc88fac18e270816ccd00cc82db11c6911b1643</originalsourceid><addsrcrecordid>eNqNklFv0zAQxy0EYmXwFcBCQjyl3NmJ7TzwMJWNTeqEBEzizXLcC0uVJsFORfvt59AypL0wP9iW7_c_n-9vxjjCHNP4sJ6jVEUmysLMBaRT0Kj0fPeEze4DT9kMygIyacSPE_YixjUASlDyOTsRIEsjUM7Y-ddhJZf88tPZgvt-M7S0403kFCN1Y-NaXveBj7fEb8mNPI4hRXiahr6LxJuO78nF8SV7Vrs20qvjespuLs6_Ly6z5ZfPV4uzZeaLUuuMIM8NkBZ5gaX3uoZKS3QKqtobUzuPhoQGg8r7FYD3RqwqRK9KxApVLk_Z-0PeIfS_thRHu2mip7Z1HfXbaHWuwCil4f-klDkok8tEvn1Arvtt6NIzrJTKSKWgSJA5QD70MQaq7RCajQt7i2AnS-zaTp23U-ftZIn9Y4ndJenrY_5ttaHVvfCvBwl4dwRc9K6tg-t8E_9xQiuJeqrh44H73bS0f3QB9vr6atol_ZuDvna9dT9DuuPmm5j-BJocCoXyDma0rQ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>336836605</pqid></control><display><type>article</type><title>Rpd3L HDAC complex is essential for the heat stress response in yeast</title><source>Wiley-Blackwell Journals</source><source>Wiley-Blackwell Open Access Backfiles</source><source>MEDLINE</source><source>Free Full-Text Journals in Chemistry</source><source>EZB*</source><creator>Ruiz-Roig, Clàudia ; Viéitez, Cristina ; Posas, Francesc ; de Nadal, Eulàlia</creator><creatorcontrib>Ruiz-Roig, Clàudia ; Viéitez, Cristina ; Posas, Francesc ; de Nadal, Eulàlia</creatorcontrib><description>To ensure cell survival and growth during temperature increase, eukaryotic organisms respond with transcriptional activation that results in accumulation of proteins that protect against damage and facilitate recovery. To define the global cellular adaptation response to heat stress, we performed a systematic genetic screen that yielded 277 yeast genes required for growth at high temperature. Of these, the Rpd3 histone deacetylase complex was enriched. Global gene expression analysis showed that Rpd3 partially regulated gene expression upon heat shock. The Hsf1 and Msn2/4 transcription factors are the main regulators of gene activation in response to heat stress. RPD3-deficient cells had impaired activation of Msn2/4-dependent genes, while activation of genes controlled by Hsf1 was deacetylase-independent. Rpd3 bound to heat stress-dependent promoters through the Msn2/4 transcription factors, allowing entry of RNA Pol II and activation of transcription upon stress. Finally, we found that the large, but not the small Rpd3 complex regulated cell adaptation in response to heat stress.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/j.1365-2958.2010.07167.x</identifier><identifier>PMID: 20398213</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Biological and medical sciences ; Cells ; DNA-Binding Proteins - metabolism ; Eukaryotes ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene Expression Regulation, Fungal ; Gene Regulatory Networks ; Heat-Shock Response - genetics ; High temperature ; Histone Deacetylases - metabolism ; Microbiology ; Promoter Regions, Genetic ; Proteins ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Transcription Factors - metabolism ; Transcriptional Activation ; Yeast</subject><ispartof>Molecular microbiology, 2010-05, Vol.76 (4), p.1049-1062</ispartof><rights>2010 Blackwell Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Ltd. May 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5977-e04480e724519cc7f0b731a60bfc88fac18e270816ccd00cc82db11c6911b1643</citedby><cites>FETCH-LOGICAL-c5977-e04480e724519cc7f0b731a60bfc88fac18e270816ccd00cc82db11c6911b1643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2958.2010.07167.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2958.2010.07167.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22763175$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20398213$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruiz-Roig, Clàudia</creatorcontrib><creatorcontrib>Viéitez, Cristina</creatorcontrib><creatorcontrib>Posas, Francesc</creatorcontrib><creatorcontrib>de Nadal, Eulàlia</creatorcontrib><title>Rpd3L HDAC complex is essential for the heat stress response in yeast</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>To ensure cell survival and growth during temperature increase, eukaryotic organisms respond with transcriptional activation that results in accumulation of proteins that protect against damage and facilitate recovery. To define the global cellular adaptation response to heat stress, we performed a systematic genetic screen that yielded 277 yeast genes required for growth at high temperature. Of these, the Rpd3 histone deacetylase complex was enriched. Global gene expression analysis showed that Rpd3 partially regulated gene expression upon heat shock. The Hsf1 and Msn2/4 transcription factors are the main regulators of gene activation in response to heat stress. RPD3-deficient cells had impaired activation of Msn2/4-dependent genes, while activation of genes controlled by Hsf1 was deacetylase-independent. Rpd3 bound to heat stress-dependent promoters through the Msn2/4 transcription factors, allowing entry of RNA Pol II and activation of transcription upon stress. Finally, we found that the large, but not the small Rpd3 complex regulated cell adaptation in response to heat stress.</description><subject>Biological and medical sciences</subject><subject>Cells</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Eukaryotes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Gene Regulatory Networks</subject><subject>Heat-Shock Response - genetics</subject><subject>High temperature</subject><subject>Histone Deacetylases - metabolism</subject><subject>Microbiology</subject><subject>Promoter Regions, Genetic</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Transcription Factors - metabolism</subject><subject>Transcriptional Activation</subject><subject>Yeast</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNklFv0zAQxy0EYmXwFcBCQjyl3NmJ7TzwMJWNTeqEBEzizXLcC0uVJsFORfvt59AypL0wP9iW7_c_n-9vxjjCHNP4sJ6jVEUmysLMBaRT0Kj0fPeEze4DT9kMygIyacSPE_YixjUASlDyOTsRIEsjUM7Y-ddhJZf88tPZgvt-M7S0403kFCN1Y-NaXveBj7fEb8mNPI4hRXiahr6LxJuO78nF8SV7Vrs20qvjespuLs6_Ly6z5ZfPV4uzZeaLUuuMIM8NkBZ5gaX3uoZKS3QKqtobUzuPhoQGg8r7FYD3RqwqRK9KxApVLk_Z-0PeIfS_thRHu2mip7Z1HfXbaHWuwCil4f-klDkok8tEvn1Arvtt6NIzrJTKSKWgSJA5QD70MQaq7RCajQt7i2AnS-zaTp23U-ftZIn9Y4ndJenrY_5ttaHVvfCvBwl4dwRc9K6tg-t8E_9xQiuJeqrh44H73bS0f3QB9vr6atol_ZuDvna9dT9DuuPmm5j-BJocCoXyDma0rQ8</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Ruiz-Roig, Clàudia</creator><creator>Viéitez, Cristina</creator><creator>Posas, Francesc</creator><creator>de Nadal, Eulàlia</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201005</creationdate><title>Rpd3L HDAC complex is essential for the heat stress response in yeast</title><author>Ruiz-Roig, Clàudia ; Viéitez, Cristina ; Posas, Francesc ; de Nadal, Eulàlia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5977-e04480e724519cc7f0b731a60bfc88fac18e270816ccd00cc82db11c6911b1643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biological and medical sciences</topic><topic>Cells</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Eukaryotes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Gene Regulatory Networks</topic><topic>Heat-Shock Response - genetics</topic><topic>High temperature</topic><topic>Histone Deacetylases - metabolism</topic><topic>Microbiology</topic><topic>Promoter Regions, Genetic</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Transcription Factors - metabolism</topic><topic>Transcriptional Activation</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruiz-Roig, Clàudia</creatorcontrib><creatorcontrib>Viéitez, Cristina</creatorcontrib><creatorcontrib>Posas, Francesc</creatorcontrib><creatorcontrib>de Nadal, Eulàlia</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruiz-Roig, Clàudia</au><au>Viéitez, Cristina</au><au>Posas, Francesc</au><au>de Nadal, Eulàlia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rpd3L HDAC complex is essential for the heat stress response in yeast</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2010-05</date><risdate>2010</risdate><volume>76</volume><issue>4</issue><spage>1049</spage><epage>1062</epage><pages>1049-1062</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>To ensure cell survival and growth during temperature increase, eukaryotic organisms respond with transcriptional activation that results in accumulation of proteins that protect against damage and facilitate recovery. To define the global cellular adaptation response to heat stress, we performed a systematic genetic screen that yielded 277 yeast genes required for growth at high temperature. Of these, the Rpd3 histone deacetylase complex was enriched. Global gene expression analysis showed that Rpd3 partially regulated gene expression upon heat shock. The Hsf1 and Msn2/4 transcription factors are the main regulators of gene activation in response to heat stress. RPD3-deficient cells had impaired activation of Msn2/4-dependent genes, while activation of genes controlled by Hsf1 was deacetylase-independent. Rpd3 bound to heat stress-dependent promoters through the Msn2/4 transcription factors, allowing entry of RNA Pol II and activation of transcription upon stress. Finally, we found that the large, but not the small Rpd3 complex regulated cell adaptation in response to heat stress.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>20398213</pmid><doi>10.1111/j.1365-2958.2010.07167.x</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-382X |
ispartof | Molecular microbiology, 2010-05, Vol.76 (4), p.1049-1062 |
issn | 0950-382X 1365-2958 |
language | eng |
recordid | cdi_proquest_miscellaneous_746086670 |
source | Wiley-Blackwell Journals; Wiley-Blackwell Open Access Backfiles; MEDLINE; Free Full-Text Journals in Chemistry; EZB* |
subjects | Biological and medical sciences Cells DNA-Binding Proteins - metabolism Eukaryotes Fundamental and applied biological sciences. Psychology Gene expression Gene Expression Regulation, Fungal Gene Regulatory Networks Heat-Shock Response - genetics High temperature Histone Deacetylases - metabolism Microbiology Promoter Regions, Genetic Proteins Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins - metabolism Transcription Factors - metabolism Transcriptional Activation Yeast |
title | Rpd3L HDAC complex is essential for the heat stress response in yeast |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T07%3A10%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rpd3L%20HDAC%20complex%20is%20essential%20for%20the%20heat%20stress%20response%20in%20yeast&rft.jtitle=Molecular%20microbiology&rft.au=Ruiz-Roig,%20Cl%C3%A0udia&rft.date=2010-05&rft.volume=76&rft.issue=4&rft.spage=1049&rft.epage=1062&rft.pages=1049-1062&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/j.1365-2958.2010.07167.x&rft_dat=%3Cproquest_cross%3E746086670%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=336836605&rft_id=info:pmid/20398213&rfr_iscdi=true |