Rpd3L HDAC complex is essential for the heat stress response in yeast

To ensure cell survival and growth during temperature increase, eukaryotic organisms respond with transcriptional activation that results in accumulation of proteins that protect against damage and facilitate recovery. To define the global cellular adaptation response to heat stress, we performed a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2010-05, Vol.76 (4), p.1049-1062
Hauptverfasser: Ruiz-Roig, Clàudia, Viéitez, Cristina, Posas, Francesc, de Nadal, Eulàlia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1062
container_issue 4
container_start_page 1049
container_title Molecular microbiology
container_volume 76
creator Ruiz-Roig, Clàudia
Viéitez, Cristina
Posas, Francesc
de Nadal, Eulàlia
description To ensure cell survival and growth during temperature increase, eukaryotic organisms respond with transcriptional activation that results in accumulation of proteins that protect against damage and facilitate recovery. To define the global cellular adaptation response to heat stress, we performed a systematic genetic screen that yielded 277 yeast genes required for growth at high temperature. Of these, the Rpd3 histone deacetylase complex was enriched. Global gene expression analysis showed that Rpd3 partially regulated gene expression upon heat shock. The Hsf1 and Msn2/4 transcription factors are the main regulators of gene activation in response to heat stress. RPD3-deficient cells had impaired activation of Msn2/4-dependent genes, while activation of genes controlled by Hsf1 was deacetylase-independent. Rpd3 bound to heat stress-dependent promoters through the Msn2/4 transcription factors, allowing entry of RNA Pol II and activation of transcription upon stress. Finally, we found that the large, but not the small Rpd3 complex regulated cell adaptation in response to heat stress.
doi_str_mv 10.1111/j.1365-2958.2010.07167.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746086670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>746086670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5977-e04480e724519cc7f0b731a60bfc88fac18e270816ccd00cc82db11c6911b1643</originalsourceid><addsrcrecordid>eNqNklFv0zAQxy0EYmXwFcBCQjyl3NmJ7TzwMJWNTeqEBEzizXLcC0uVJsFORfvt59AypL0wP9iW7_c_n-9vxjjCHNP4sJ6jVEUmysLMBaRT0Kj0fPeEze4DT9kMygIyacSPE_YixjUASlDyOTsRIEsjUM7Y-ddhJZf88tPZgvt-M7S0403kFCN1Y-NaXveBj7fEb8mNPI4hRXiahr6LxJuO78nF8SV7Vrs20qvjespuLs6_Ly6z5ZfPV4uzZeaLUuuMIM8NkBZ5gaX3uoZKS3QKqtobUzuPhoQGg8r7FYD3RqwqRK9KxApVLk_Z-0PeIfS_thRHu2mip7Z1HfXbaHWuwCil4f-klDkok8tEvn1Arvtt6NIzrJTKSKWgSJA5QD70MQaq7RCajQt7i2AnS-zaTp23U-ftZIn9Y4ndJenrY_5ttaHVvfCvBwl4dwRc9K6tg-t8E_9xQiuJeqrh44H73bS0f3QB9vr6atol_ZuDvna9dT9DuuPmm5j-BJocCoXyDma0rQ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>336836605</pqid></control><display><type>article</type><title>Rpd3L HDAC complex is essential for the heat stress response in yeast</title><source>Wiley-Blackwell Journals</source><source>Wiley-Blackwell Open Access Backfiles</source><source>MEDLINE</source><source>Free Full-Text Journals in Chemistry</source><source>EZB*</source><creator>Ruiz-Roig, Clàudia ; Viéitez, Cristina ; Posas, Francesc ; de Nadal, Eulàlia</creator><creatorcontrib>Ruiz-Roig, Clàudia ; Viéitez, Cristina ; Posas, Francesc ; de Nadal, Eulàlia</creatorcontrib><description>To ensure cell survival and growth during temperature increase, eukaryotic organisms respond with transcriptional activation that results in accumulation of proteins that protect against damage and facilitate recovery. To define the global cellular adaptation response to heat stress, we performed a systematic genetic screen that yielded 277 yeast genes required for growth at high temperature. Of these, the Rpd3 histone deacetylase complex was enriched. Global gene expression analysis showed that Rpd3 partially regulated gene expression upon heat shock. The Hsf1 and Msn2/4 transcription factors are the main regulators of gene activation in response to heat stress. RPD3-deficient cells had impaired activation of Msn2/4-dependent genes, while activation of genes controlled by Hsf1 was deacetylase-independent. Rpd3 bound to heat stress-dependent promoters through the Msn2/4 transcription factors, allowing entry of RNA Pol II and activation of transcription upon stress. Finally, we found that the large, but not the small Rpd3 complex regulated cell adaptation in response to heat stress.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/j.1365-2958.2010.07167.x</identifier><identifier>PMID: 20398213</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Biological and medical sciences ; Cells ; DNA-Binding Proteins - metabolism ; Eukaryotes ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene Expression Regulation, Fungal ; Gene Regulatory Networks ; Heat-Shock Response - genetics ; High temperature ; Histone Deacetylases - metabolism ; Microbiology ; Promoter Regions, Genetic ; Proteins ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Transcription Factors - metabolism ; Transcriptional Activation ; Yeast</subject><ispartof>Molecular microbiology, 2010-05, Vol.76 (4), p.1049-1062</ispartof><rights>2010 Blackwell Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Ltd. May 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5977-e04480e724519cc7f0b731a60bfc88fac18e270816ccd00cc82db11c6911b1643</citedby><cites>FETCH-LOGICAL-c5977-e04480e724519cc7f0b731a60bfc88fac18e270816ccd00cc82db11c6911b1643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2958.2010.07167.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2958.2010.07167.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22763175$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20398213$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruiz-Roig, Clàudia</creatorcontrib><creatorcontrib>Viéitez, Cristina</creatorcontrib><creatorcontrib>Posas, Francesc</creatorcontrib><creatorcontrib>de Nadal, Eulàlia</creatorcontrib><title>Rpd3L HDAC complex is essential for the heat stress response in yeast</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>To ensure cell survival and growth during temperature increase, eukaryotic organisms respond with transcriptional activation that results in accumulation of proteins that protect against damage and facilitate recovery. To define the global cellular adaptation response to heat stress, we performed a systematic genetic screen that yielded 277 yeast genes required for growth at high temperature. Of these, the Rpd3 histone deacetylase complex was enriched. Global gene expression analysis showed that Rpd3 partially regulated gene expression upon heat shock. The Hsf1 and Msn2/4 transcription factors are the main regulators of gene activation in response to heat stress. RPD3-deficient cells had impaired activation of Msn2/4-dependent genes, while activation of genes controlled by Hsf1 was deacetylase-independent. Rpd3 bound to heat stress-dependent promoters through the Msn2/4 transcription factors, allowing entry of RNA Pol II and activation of transcription upon stress. Finally, we found that the large, but not the small Rpd3 complex regulated cell adaptation in response to heat stress.</description><subject>Biological and medical sciences</subject><subject>Cells</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Eukaryotes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Gene Regulatory Networks</subject><subject>Heat-Shock Response - genetics</subject><subject>High temperature</subject><subject>Histone Deacetylases - metabolism</subject><subject>Microbiology</subject><subject>Promoter Regions, Genetic</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Transcription Factors - metabolism</subject><subject>Transcriptional Activation</subject><subject>Yeast</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNklFv0zAQxy0EYmXwFcBCQjyl3NmJ7TzwMJWNTeqEBEzizXLcC0uVJsFORfvt59AypL0wP9iW7_c_n-9vxjjCHNP4sJ6jVEUmysLMBaRT0Kj0fPeEze4DT9kMygIyacSPE_YixjUASlDyOTsRIEsjUM7Y-ddhJZf88tPZgvt-M7S0403kFCN1Y-NaXveBj7fEb8mNPI4hRXiahr6LxJuO78nF8SV7Vrs20qvjespuLs6_Ly6z5ZfPV4uzZeaLUuuMIM8NkBZ5gaX3uoZKS3QKqtobUzuPhoQGg8r7FYD3RqwqRK9KxApVLk_Z-0PeIfS_thRHu2mip7Z1HfXbaHWuwCil4f-klDkok8tEvn1Arvtt6NIzrJTKSKWgSJA5QD70MQaq7RCajQt7i2AnS-zaTp23U-ftZIn9Y4ndJenrY_5ttaHVvfCvBwl4dwRc9K6tg-t8E_9xQiuJeqrh44H73bS0f3QB9vr6atol_ZuDvna9dT9DuuPmm5j-BJocCoXyDma0rQ8</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Ruiz-Roig, Clàudia</creator><creator>Viéitez, Cristina</creator><creator>Posas, Francesc</creator><creator>de Nadal, Eulàlia</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201005</creationdate><title>Rpd3L HDAC complex is essential for the heat stress response in yeast</title><author>Ruiz-Roig, Clàudia ; Viéitez, Cristina ; Posas, Francesc ; de Nadal, Eulàlia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5977-e04480e724519cc7f0b731a60bfc88fac18e270816ccd00cc82db11c6911b1643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biological and medical sciences</topic><topic>Cells</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Eukaryotes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Gene Regulatory Networks</topic><topic>Heat-Shock Response - genetics</topic><topic>High temperature</topic><topic>Histone Deacetylases - metabolism</topic><topic>Microbiology</topic><topic>Promoter Regions, Genetic</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Transcription Factors - metabolism</topic><topic>Transcriptional Activation</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruiz-Roig, Clàudia</creatorcontrib><creatorcontrib>Viéitez, Cristina</creatorcontrib><creatorcontrib>Posas, Francesc</creatorcontrib><creatorcontrib>de Nadal, Eulàlia</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruiz-Roig, Clàudia</au><au>Viéitez, Cristina</au><au>Posas, Francesc</au><au>de Nadal, Eulàlia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rpd3L HDAC complex is essential for the heat stress response in yeast</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2010-05</date><risdate>2010</risdate><volume>76</volume><issue>4</issue><spage>1049</spage><epage>1062</epage><pages>1049-1062</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>To ensure cell survival and growth during temperature increase, eukaryotic organisms respond with transcriptional activation that results in accumulation of proteins that protect against damage and facilitate recovery. To define the global cellular adaptation response to heat stress, we performed a systematic genetic screen that yielded 277 yeast genes required for growth at high temperature. Of these, the Rpd3 histone deacetylase complex was enriched. Global gene expression analysis showed that Rpd3 partially regulated gene expression upon heat shock. The Hsf1 and Msn2/4 transcription factors are the main regulators of gene activation in response to heat stress. RPD3-deficient cells had impaired activation of Msn2/4-dependent genes, while activation of genes controlled by Hsf1 was deacetylase-independent. Rpd3 bound to heat stress-dependent promoters through the Msn2/4 transcription factors, allowing entry of RNA Pol II and activation of transcription upon stress. Finally, we found that the large, but not the small Rpd3 complex regulated cell adaptation in response to heat stress.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>20398213</pmid><doi>10.1111/j.1365-2958.2010.07167.x</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2010-05, Vol.76 (4), p.1049-1062
issn 0950-382X
1365-2958
language eng
recordid cdi_proquest_miscellaneous_746086670
source Wiley-Blackwell Journals; Wiley-Blackwell Open Access Backfiles; MEDLINE; Free Full-Text Journals in Chemistry; EZB*
subjects Biological and medical sciences
Cells
DNA-Binding Proteins - metabolism
Eukaryotes
Fundamental and applied biological sciences. Psychology
Gene expression
Gene Expression Regulation, Fungal
Gene Regulatory Networks
Heat-Shock Response - genetics
High temperature
Histone Deacetylases - metabolism
Microbiology
Promoter Regions, Genetic
Proteins
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - metabolism
Transcription Factors - metabolism
Transcriptional Activation
Yeast
title Rpd3L HDAC complex is essential for the heat stress response in yeast
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T07%3A10%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rpd3L%20HDAC%20complex%20is%20essential%20for%20the%20heat%20stress%20response%20in%20yeast&rft.jtitle=Molecular%20microbiology&rft.au=Ruiz-Roig,%20Cl%C3%A0udia&rft.date=2010-05&rft.volume=76&rft.issue=4&rft.spage=1049&rft.epage=1062&rft.pages=1049-1062&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/j.1365-2958.2010.07167.x&rft_dat=%3Cproquest_cross%3E746086670%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=336836605&rft_id=info:pmid/20398213&rfr_iscdi=true