Small-sample precision of ROC-related estimates
Motivation: The receiver operator characteristic (ROC) curves are commonly used in biomedical applications to judge the performance of a discriminant across varying decision thresholds. The estimated ROC curve depends on the true positive rate (TPR) and false positive rate (FPR), with the key metric...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2010-03, Vol.26 (6), p.822-830 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 830 |
---|---|
container_issue | 6 |
container_start_page | 822 |
container_title | Bioinformatics |
container_volume | 26 |
creator | Hanczar, Blaise Hua, Jianping Sima, Chao Weinstein, John Bittner, Michael Dougherty, Edward R. |
description | Motivation: The receiver operator characteristic (ROC) curves are commonly used in biomedical applications to judge the performance of a discriminant across varying decision thresholds. The estimated ROC curve depends on the true positive rate (TPR) and false positive rate (FPR), with the key metric being the area under the curve (AUC). With small samples these rates need to be estimated from the training data, so a natural question arises: How well do the estimates of the AUC, TPR and FPR compare with the true metrics? Results: Through a simulation study using data models and analysis of real microarray data, we show that (i) for small samples the root mean square differences of the estimated and true metrics are considerable; (ii) even for large samples, there is only weak correlation between the true and estimated metrics; and (iii) generally, there is weak regression of the true metric on the estimated metric. For classification rules, we consider linear discriminant analysis, linear support vector machine (SVM) and radial basis function SVM. For error estimation, we consider resubstitution, three kinds of cross-validation and bootstrap. Using resampling, we show the unreliability of some published ROC results. Availability: Companion web site at http://compbio.tgen.org/paper_supp/ROC/roc.html Contact: edward@mail.ece.tamu.edu |
doi_str_mv | 10.1093/bioinformatics/btq037 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746084472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>746084472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-2dbde2f1b53b7ea232895827e2ecd9b9046296500c1acbe37a52b17b69eb013e3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMotlZ_gtKLeFo7-dp0j1I_KpQWv0C8hCQ7C6u73ZpsQf-9ka0VT54ykGfmnXkIOaZwTiHjI1s25bJofG3a0oWRbd-Bqx3SpyKFhIHMdmPNU5WIMfAeOQjhFUBSIcQ-6TGgHIBlfTJ6qE1VJcHUqwqHK4-uDGWzHDbF8H4xSTxWpsV8iKEtYxKGQ7JXmCrg0eYdkKfrq8fJNJktbm4nF7PECSnbhOU2R1ZQK7lVaBhn40yOmUKGLs9sBiJlWSoBHDXOIldGMkuVTTO0cTfkA3LWzV355n0d43VdBodVZZbYrINW8cyxEIr9T3LOgYnobEBkRzrfhOCx0Csfr_KfmoL-lqr_StWd1Nh3sklY2xrzbdePxQicbgATnKkKb5ZR4y_HJJOgROSSjitDix_bf-PfdKq4knr6_KIncCfn8ynVl_wL0R2S8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733302409</pqid></control><display><type>article</type><title>Small-sample precision of ROC-related estimates</title><source>MEDLINE</source><source>Access via Oxford University Press (Open Access Collection)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Hanczar, Blaise ; Hua, Jianping ; Sima, Chao ; Weinstein, John ; Bittner, Michael ; Dougherty, Edward R.</creator><creatorcontrib>Hanczar, Blaise ; Hua, Jianping ; Sima, Chao ; Weinstein, John ; Bittner, Michael ; Dougherty, Edward R.</creatorcontrib><description>Motivation: The receiver operator characteristic (ROC) curves are commonly used in biomedical applications to judge the performance of a discriminant across varying decision thresholds. The estimated ROC curve depends on the true positive rate (TPR) and false positive rate (FPR), with the key metric being the area under the curve (AUC). With small samples these rates need to be estimated from the training data, so a natural question arises: How well do the estimates of the AUC, TPR and FPR compare with the true metrics? Results: Through a simulation study using data models and analysis of real microarray data, we show that (i) for small samples the root mean square differences of the estimated and true metrics are considerable; (ii) even for large samples, there is only weak correlation between the true and estimated metrics; and (iii) generally, there is weak regression of the true metric on the estimated metric. For classification rules, we consider linear discriminant analysis, linear support vector machine (SVM) and radial basis function SVM. For error estimation, we consider resubstitution, three kinds of cross-validation and bootstrap. Using resampling, we show the unreliability of some published ROC results. Availability: Companion web site at http://compbio.tgen.org/paper_supp/ROC/roc.html Contact: edward@mail.ece.tamu.edu</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btq037</identifier><identifier>PMID: 20130029</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Algorithms ; Biological and medical sciences ; False Positive Reactions ; Fundamental and applied biological sciences. Psychology ; General aspects ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Oligonucleotide Array Sequence Analysis ; Pattern Recognition, Automated - methods ; ROC Curve</subject><ispartof>Bioinformatics, 2010-03, Vol.26 (6), p.822-830</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-2dbde2f1b53b7ea232895827e2ecd9b9046296500c1acbe37a52b17b69eb013e3</citedby><cites>FETCH-LOGICAL-c455t-2dbde2f1b53b7ea232895827e2ecd9b9046296500c1acbe37a52b17b69eb013e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22525074$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20130029$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hanczar, Blaise</creatorcontrib><creatorcontrib>Hua, Jianping</creatorcontrib><creatorcontrib>Sima, Chao</creatorcontrib><creatorcontrib>Weinstein, John</creatorcontrib><creatorcontrib>Bittner, Michael</creatorcontrib><creatorcontrib>Dougherty, Edward R.</creatorcontrib><title>Small-sample precision of ROC-related estimates</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Motivation: The receiver operator characteristic (ROC) curves are commonly used in biomedical applications to judge the performance of a discriminant across varying decision thresholds. The estimated ROC curve depends on the true positive rate (TPR) and false positive rate (FPR), with the key metric being the area under the curve (AUC). With small samples these rates need to be estimated from the training data, so a natural question arises: How well do the estimates of the AUC, TPR and FPR compare with the true metrics? Results: Through a simulation study using data models and analysis of real microarray data, we show that (i) for small samples the root mean square differences of the estimated and true metrics are considerable; (ii) even for large samples, there is only weak correlation between the true and estimated metrics; and (iii) generally, there is weak regression of the true metric on the estimated metric. For classification rules, we consider linear discriminant analysis, linear support vector machine (SVM) and radial basis function SVM. For error estimation, we consider resubstitution, three kinds of cross-validation and bootstrap. Using resampling, we show the unreliability of some published ROC results. Availability: Companion web site at http://compbio.tgen.org/paper_supp/ROC/roc.html Contact: edward@mail.ece.tamu.edu</description><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>False Positive Reactions</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Pattern Recognition, Automated - methods</subject><subject>ROC Curve</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LAzEQhoMotlZ_gtKLeFo7-dp0j1I_KpQWv0C8hCQ7C6u73ZpsQf-9ka0VT54ykGfmnXkIOaZwTiHjI1s25bJofG3a0oWRbd-Bqx3SpyKFhIHMdmPNU5WIMfAeOQjhFUBSIcQ-6TGgHIBlfTJ6qE1VJcHUqwqHK4-uDGWzHDbF8H4xSTxWpsV8iKEtYxKGQ7JXmCrg0eYdkKfrq8fJNJktbm4nF7PECSnbhOU2R1ZQK7lVaBhn40yOmUKGLs9sBiJlWSoBHDXOIldGMkuVTTO0cTfkA3LWzV355n0d43VdBodVZZbYrINW8cyxEIr9T3LOgYnobEBkRzrfhOCx0Csfr_KfmoL-lqr_StWd1Nh3sklY2xrzbdePxQicbgATnKkKb5ZR4y_HJJOgROSSjitDix_bf-PfdKq4knr6_KIncCfn8ynVl_wL0R2S8A</recordid><startdate>20100315</startdate><enddate>20100315</enddate><creator>Hanczar, Blaise</creator><creator>Hua, Jianping</creator><creator>Sima, Chao</creator><creator>Weinstein, John</creator><creator>Bittner, Michael</creator><creator>Dougherty, Edward R.</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20100315</creationdate><title>Small-sample precision of ROC-related estimates</title><author>Hanczar, Blaise ; Hua, Jianping ; Sima, Chao ; Weinstein, John ; Bittner, Michael ; Dougherty, Edward R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-2dbde2f1b53b7ea232895827e2ecd9b9046296500c1acbe37a52b17b69eb013e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>False Positive Reactions</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Pattern Recognition, Automated - methods</topic><topic>ROC Curve</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanczar, Blaise</creatorcontrib><creatorcontrib>Hua, Jianping</creatorcontrib><creatorcontrib>Sima, Chao</creatorcontrib><creatorcontrib>Weinstein, John</creatorcontrib><creatorcontrib>Bittner, Michael</creatorcontrib><creatorcontrib>Dougherty, Edward R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanczar, Blaise</au><au>Hua, Jianping</au><au>Sima, Chao</au><au>Weinstein, John</au><au>Bittner, Michael</au><au>Dougherty, Edward R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small-sample precision of ROC-related estimates</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2010-03-15</date><risdate>2010</risdate><volume>26</volume><issue>6</issue><spage>822</spage><epage>830</epage><pages>822-830</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Motivation: The receiver operator characteristic (ROC) curves are commonly used in biomedical applications to judge the performance of a discriminant across varying decision thresholds. The estimated ROC curve depends on the true positive rate (TPR) and false positive rate (FPR), with the key metric being the area under the curve (AUC). With small samples these rates need to be estimated from the training data, so a natural question arises: How well do the estimates of the AUC, TPR and FPR compare with the true metrics? Results: Through a simulation study using data models and analysis of real microarray data, we show that (i) for small samples the root mean square differences of the estimated and true metrics are considerable; (ii) even for large samples, there is only weak correlation between the true and estimated metrics; and (iii) generally, there is weak regression of the true metric on the estimated metric. For classification rules, we consider linear discriminant analysis, linear support vector machine (SVM) and radial basis function SVM. For error estimation, we consider resubstitution, three kinds of cross-validation and bootstrap. Using resampling, we show the unreliability of some published ROC results. Availability: Companion web site at http://compbio.tgen.org/paper_supp/ROC/roc.html Contact: edward@mail.ece.tamu.edu</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>20130029</pmid><doi>10.1093/bioinformatics/btq037</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2010-03, Vol.26 (6), p.822-830 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_proquest_miscellaneous_746084472 |
source | MEDLINE; Access via Oxford University Press (Open Access Collection); EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Algorithms Biological and medical sciences False Positive Reactions Fundamental and applied biological sciences. Psychology General aspects Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Oligonucleotide Array Sequence Analysis Pattern Recognition, Automated - methods ROC Curve |
title | Small-sample precision of ROC-related estimates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A04%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small-sample%20precision%20of%20ROC-related%20estimates&rft.jtitle=Bioinformatics&rft.au=Hanczar,%20Blaise&rft.date=2010-03-15&rft.volume=26&rft.issue=6&rft.spage=822&rft.epage=830&rft.pages=822-830&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btq037&rft_dat=%3Cproquest_cross%3E746084472%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733302409&rft_id=info:pmid/20130029&rfr_iscdi=true |