Haemodynamics and blood flow measured using ultrasound imaging

Abstract Visualization of, and measurements related to, haemodynamic phenomena in arteries may be made using ultrasound systems. Most ultrasound technology relies on simple measurements of blood velocity taken from a single site, such as the peak systolic velocity for assessment of the degree of lum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine Journal of engineering in medicine, 2010-01, Vol.224 (2), p.255-271
1. Verfasser: Hoskins, P R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 271
container_issue 2
container_start_page 255
container_title Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine
container_volume 224
creator Hoskins, P R
description Abstract Visualization of, and measurements related to, haemodynamic phenomena in arteries may be made using ultrasound systems. Most ultrasound technology relies on simple measurements of blood velocity taken from a single site, such as the peak systolic velocity for assessment of the degree of lumen reduction caused by an arterial stenosis. Real-time two-dimensional (2D) flow field visualization is possible using several methods, such as colour flow, blood flow imaging, and echo particle image velocimetry; these have applications in the examination of the flow field in diseased arteries and in heart chambers. Three-dimensional (3D) and four-dimensional ultrasound systems have been described. These have been used to provide 2D velocity profile data for the estimation of volumetric flow. However, they are limited for haemodynamic evaluation in that they provide only one component of the velocity. The provision of all seven components (three space, three velocity, and one time) is possible using image-guided modelling, in which 3D ultrasound is combined with computational fluid dynamics. This method also allows estimation of turbulence data and of relevant quantities such as the wall shear stress.
doi_str_mv 10.1243/09544119JEIM572
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746079262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1243_09544119JEIM572</sage_id><sourcerecordid>2054068951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-44b798cb5ae2f1614c07592b652b345d804cb234a8f167e8e85271195f2f6fcf3</originalsourceid><addsrcrecordid>eNqFkc1LwzAYxoMobk7P3qToQQ_WJXmTNL0IMqabTLzouaRtOjraZjYLsv_elE2RwfQUyPN7n_fjQeic4DtCGQxxzBkjJH4eT194RA9Qn2JGQsAAh6jfqWEn99CJtQuMMSFYHKMexcBiSWQf3U-Urk2-blRdZjZQTR6klTF5UFTmM6i1sq7VeeBs2cwDV61aZY3zUFmruf86RUeFqqw-274D9P44fhtNwtnr03T0MAszxmEVMpZGscxSrjQtiCAswxGPaSo4TYHxXGKWpRSYkl6NtNSS08jPzQtaiCIrYICuN77L1nw4bVdJXdpMV5VqtHE2iZjAUUwF_Z8EkMBlRDx58yfpJyFAMYUOvdxBF8a1jd84AcFjJsGHMUBX-yASY0YFCN96gIYbKmuNta0ukmXrj9muE4KTLtNkJ1NfcbH1dWmt8x_-O0QP3G4Aq-b6V9M9fl8TX6Ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>365948324</pqid></control><display><type>article</type><title>Haemodynamics and blood flow measured using ultrasound imaging</title><source>MEDLINE</source><source>SAGE Complete</source><creator>Hoskins, P R</creator><creatorcontrib>Hoskins, P R</creatorcontrib><description>Abstract Visualization of, and measurements related to, haemodynamic phenomena in arteries may be made using ultrasound systems. Most ultrasound technology relies on simple measurements of blood velocity taken from a single site, such as the peak systolic velocity for assessment of the degree of lumen reduction caused by an arterial stenosis. Real-time two-dimensional (2D) flow field visualization is possible using several methods, such as colour flow, blood flow imaging, and echo particle image velocimetry; these have applications in the examination of the flow field in diseased arteries and in heart chambers. Three-dimensional (3D) and four-dimensional ultrasound systems have been described. These have been used to provide 2D velocity profile data for the estimation of volumetric flow. However, they are limited for haemodynamic evaluation in that they provide only one component of the velocity. The provision of all seven components (three space, three velocity, and one time) is possible using image-guided modelling, in which 3D ultrasound is combined with computational fluid dynamics. This method also allows estimation of turbulence data and of relevant quantities such as the wall shear stress.</description><identifier>ISSN: 0954-4119</identifier><identifier>EISSN: 2041-3033</identifier><identifier>DOI: 10.1243/09544119JEIM572</identifier><identifier>PMID: 20349818</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Arteries ; Arteries - diagnostic imaging ; Blood ; Blood flow ; Blood Flow Velocity - physiology ; Circulatory system ; Color ; Computational fluid dynamics ; Computer applications ; Computer Simulation ; Dynamical systems ; Equipment Design ; Equipment Failure Analysis ; Fluid dynamics ; Fluid flow ; Heart ; Hemodynamics ; Humans ; Hydrodynamics ; Imaging ; Mathematical models ; Mechanical stimuli ; Models, Cardiovascular ; Particle image velocimetry ; Real time ; Reduction ; Rheology - instrumentation ; Rheology - methods ; Shear stress ; Stenosis ; Technology ; Three dimensional ; Three dimensional models ; Turbulence ; Two dimensional ; Two dimensional flow ; Ultrasonic imaging ; Ultrasonography, Doppler, Color - instrumentation ; Ultrasonography, Doppler, Color - methods ; Ultrasound ; Veins &amp; arteries ; Velocity ; Velocity measurement ; Visualization ; Xenografts</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine, 2010-01, Vol.224 (2), p.255-271</ispartof><rights>2010 Institution of Mechanical Engineers</rights><rights>Copyright Professional Engineering Publishing Ltd 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-44b798cb5ae2f1614c07592b652b345d804cb234a8f167e8e85271195f2f6fcf3</citedby><cites>FETCH-LOGICAL-c453t-44b798cb5ae2f1614c07592b652b345d804cb234a8f167e8e85271195f2f6fcf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1243/09544119JEIM572$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1243/09544119JEIM572$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20349818$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hoskins, P R</creatorcontrib><title>Haemodynamics and blood flow measured using ultrasound imaging</title><title>Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine</title><addtitle>Proc Inst Mech Eng H</addtitle><description>Abstract Visualization of, and measurements related to, haemodynamic phenomena in arteries may be made using ultrasound systems. Most ultrasound technology relies on simple measurements of blood velocity taken from a single site, such as the peak systolic velocity for assessment of the degree of lumen reduction caused by an arterial stenosis. Real-time two-dimensional (2D) flow field visualization is possible using several methods, such as colour flow, blood flow imaging, and echo particle image velocimetry; these have applications in the examination of the flow field in diseased arteries and in heart chambers. Three-dimensional (3D) and four-dimensional ultrasound systems have been described. These have been used to provide 2D velocity profile data for the estimation of volumetric flow. However, they are limited for haemodynamic evaluation in that they provide only one component of the velocity. The provision of all seven components (three space, three velocity, and one time) is possible using image-guided modelling, in which 3D ultrasound is combined with computational fluid dynamics. This method also allows estimation of turbulence data and of relevant quantities such as the wall shear stress.</description><subject>Arteries</subject><subject>Arteries - diagnostic imaging</subject><subject>Blood</subject><subject>Blood flow</subject><subject>Blood Flow Velocity - physiology</subject><subject>Circulatory system</subject><subject>Color</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Dynamical systems</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Heart</subject><subject>Hemodynamics</subject><subject>Humans</subject><subject>Hydrodynamics</subject><subject>Imaging</subject><subject>Mathematical models</subject><subject>Mechanical stimuli</subject><subject>Models, Cardiovascular</subject><subject>Particle image velocimetry</subject><subject>Real time</subject><subject>Reduction</subject><subject>Rheology - instrumentation</subject><subject>Rheology - methods</subject><subject>Shear stress</subject><subject>Stenosis</subject><subject>Technology</subject><subject>Three dimensional</subject><subject>Three dimensional models</subject><subject>Turbulence</subject><subject>Two dimensional</subject><subject>Two dimensional flow</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography, Doppler, Color - instrumentation</subject><subject>Ultrasonography, Doppler, Color - methods</subject><subject>Ultrasound</subject><subject>Veins &amp; arteries</subject><subject>Velocity</subject><subject>Velocity measurement</subject><subject>Visualization</subject><subject>Xenografts</subject><issn>0954-4119</issn><issn>2041-3033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkc1LwzAYxoMobk7P3qToQQ_WJXmTNL0IMqabTLzouaRtOjraZjYLsv_elE2RwfQUyPN7n_fjQeic4DtCGQxxzBkjJH4eT194RA9Qn2JGQsAAh6jfqWEn99CJtQuMMSFYHKMexcBiSWQf3U-Urk2-blRdZjZQTR6klTF5UFTmM6i1sq7VeeBs2cwDV61aZY3zUFmruf86RUeFqqw-274D9P44fhtNwtnr03T0MAszxmEVMpZGscxSrjQtiCAswxGPaSo4TYHxXGKWpRSYkl6NtNSS08jPzQtaiCIrYICuN77L1nw4bVdJXdpMV5VqtHE2iZjAUUwF_Z8EkMBlRDx58yfpJyFAMYUOvdxBF8a1jd84AcFjJsGHMUBX-yASY0YFCN96gIYbKmuNta0ukmXrj9muE4KTLtNkJ1NfcbH1dWmt8x_-O0QP3G4Aq-b6V9M9fl8TX6Ww</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Hoskins, P R</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20100101</creationdate><title>Haemodynamics and blood flow measured using ultrasound imaging</title><author>Hoskins, P R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-44b798cb5ae2f1614c07592b652b345d804cb234a8f167e8e85271195f2f6fcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Arteries</topic><topic>Arteries - diagnostic imaging</topic><topic>Blood</topic><topic>Blood flow</topic><topic>Blood Flow Velocity - physiology</topic><topic>Circulatory system</topic><topic>Color</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Dynamical systems</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Heart</topic><topic>Hemodynamics</topic><topic>Humans</topic><topic>Hydrodynamics</topic><topic>Imaging</topic><topic>Mathematical models</topic><topic>Mechanical stimuli</topic><topic>Models, Cardiovascular</topic><topic>Particle image velocimetry</topic><topic>Real time</topic><topic>Reduction</topic><topic>Rheology - instrumentation</topic><topic>Rheology - methods</topic><topic>Shear stress</topic><topic>Stenosis</topic><topic>Technology</topic><topic>Three dimensional</topic><topic>Three dimensional models</topic><topic>Turbulence</topic><topic>Two dimensional</topic><topic>Two dimensional flow</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography, Doppler, Color - instrumentation</topic><topic>Ultrasonography, Doppler, Color - methods</topic><topic>Ultrasound</topic><topic>Veins &amp; arteries</topic><topic>Velocity</topic><topic>Velocity measurement</topic><topic>Visualization</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoskins, P R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoskins, P R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Haemodynamics and blood flow measured using ultrasound imaging</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine</jtitle><addtitle>Proc Inst Mech Eng H</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>224</volume><issue>2</issue><spage>255</spage><epage>271</epage><pages>255-271</pages><issn>0954-4119</issn><eissn>2041-3033</eissn><abstract>Abstract Visualization of, and measurements related to, haemodynamic phenomena in arteries may be made using ultrasound systems. Most ultrasound technology relies on simple measurements of blood velocity taken from a single site, such as the peak systolic velocity for assessment of the degree of lumen reduction caused by an arterial stenosis. Real-time two-dimensional (2D) flow field visualization is possible using several methods, such as colour flow, blood flow imaging, and echo particle image velocimetry; these have applications in the examination of the flow field in diseased arteries and in heart chambers. Three-dimensional (3D) and four-dimensional ultrasound systems have been described. These have been used to provide 2D velocity profile data for the estimation of volumetric flow. However, they are limited for haemodynamic evaluation in that they provide only one component of the velocity. The provision of all seven components (three space, three velocity, and one time) is possible using image-guided modelling, in which 3D ultrasound is combined with computational fluid dynamics. This method also allows estimation of turbulence data and of relevant quantities such as the wall shear stress.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>20349818</pmid><doi>10.1243/09544119JEIM572</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0954-4119
ispartof Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine, 2010-01, Vol.224 (2), p.255-271
issn 0954-4119
2041-3033
language eng
recordid cdi_proquest_miscellaneous_746079262
source MEDLINE; SAGE Complete
subjects Arteries
Arteries - diagnostic imaging
Blood
Blood flow
Blood Flow Velocity - physiology
Circulatory system
Color
Computational fluid dynamics
Computer applications
Computer Simulation
Dynamical systems
Equipment Design
Equipment Failure Analysis
Fluid dynamics
Fluid flow
Heart
Hemodynamics
Humans
Hydrodynamics
Imaging
Mathematical models
Mechanical stimuli
Models, Cardiovascular
Particle image velocimetry
Real time
Reduction
Rheology - instrumentation
Rheology - methods
Shear stress
Stenosis
Technology
Three dimensional
Three dimensional models
Turbulence
Two dimensional
Two dimensional flow
Ultrasonic imaging
Ultrasonography, Doppler, Color - instrumentation
Ultrasonography, Doppler, Color - methods
Ultrasound
Veins & arteries
Velocity
Velocity measurement
Visualization
Xenografts
title Haemodynamics and blood flow measured using ultrasound imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A43%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Haemodynamics%20and%20blood%20flow%20measured%20using%20ultrasound%20imaging&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20H,%20Journal%20of%20engineering%20in%20medicine&rft.au=Hoskins,%20P%20R&rft.date=2010-01-01&rft.volume=224&rft.issue=2&rft.spage=255&rft.epage=271&rft.pages=255-271&rft.issn=0954-4119&rft.eissn=2041-3033&rft_id=info:doi/10.1243/09544119JEIM572&rft_dat=%3Cproquest_cross%3E2054068951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=365948324&rft_id=info:pmid/20349818&rft_sage_id=10.1243_09544119JEIM572&rfr_iscdi=true