The two-stage recombination operator and its application to the multiobjective 0/1 knapsack problem: A comparative study

In this paper, we first propose a new recombination operator called the two-stage recombination and then we test its performance in the context of the multiobjective 0/1 knapsack problem (MOKP). The proposed recombination operator generates only one offspring solution from a selected pair of parents...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & operations research 2009-12, Vol.36 (12), p.3247-3262
Hauptverfasser: Aghezzaf, Brahim, Naimi, Mohamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3262
container_issue 12
container_start_page 3247
container_title Computers & operations research
container_volume 36
creator Aghezzaf, Brahim
Naimi, Mohamed
description In this paper, we first propose a new recombination operator called the two-stage recombination and then we test its performance in the context of the multiobjective 0/1 knapsack problem (MOKP). The proposed recombination operator generates only one offspring solution from a selected pair of parents according to the following two stages. In the first stage, called genetic shared-information stage or similarity-preserving stage, the generated offspring inherits all parent similar genes (i.e., genes or decision variables having the same positions and the same values in both parents). In the second stage, called problem fitness-information stage, the parent non-similar genes (i.e., genes or decision variables having the same positions but different values regarding the two parents) are selected from one of the two parents using some fitness information. Initially, we propose two different approaches for the second stage: the general version and the restricted version. However, the application of the restricted version to the MOKP leads to an improved version which is more specific to this problem. The general and the MOKP-specific versions of the two-stage recombination are compared against three traditional crossovers using two well-known multiobjective evolutionary algorithms. Promising results are obtained. We also provide a comparison between the general version and the MOKP-specific version.
doi_str_mv 10.1016/j.cor.2009.02.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746076164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305054809000665</els_id><sourcerecordid>34540907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-6184b21f0192acc587e397f36649484b7054d34758c90183bd137e7356a71f223</originalsourceid><addsrcrecordid>eNp9kU2L1jAUhYso-Dr6A9wFQV31ndx8troaBr9gwM0I7kKa3mo6bVOTdHT-vSnv4MLFhAsh3Oee5ORU1UugR6CgzsejC_HIKG2PlJXSj6oDNJrXWsnvj6sD5VTWVIrmafUspZGWpRkcqj_XP5Hk36FO2f5AEtGFufOLzT4sJKwYbQ6R2KUnPidi13Xy7tTMgeQyO29TOXYjuuxvkdBzIDeLXZN1N2SNoZtwfkcuSJFdbRHbmZS3_u559WSwU8IX9_tZ9e3jh-vLz_XV109fLi-uaidEk2sFjegYDBRaZp2TjUbe6oErJVpRWrp46rnQsnEthYZ3PXCNmktlNQyM8bPq7Um3PObXhimb2SeH02QXDFsyWiiqFShRyDcPklxIQVuqC_jqP3AMW1yKCwOtbCQFBgWCE-RiSCniYNboZxvvDFCzR2ZGUyIze2SGslK78Ot7YZucnYZoF-fTv0EGqgXOd0_vTxyWj7v1GE1yHheHvS8BZtMH_8AtfwGOi6qg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195850121</pqid></control><display><type>article</type><title>The two-stage recombination operator and its application to the multiobjective 0/1 knapsack problem: A comparative study</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Aghezzaf, Brahim ; Naimi, Mohamed</creator><creatorcontrib>Aghezzaf, Brahim ; Naimi, Mohamed</creatorcontrib><description>In this paper, we first propose a new recombination operator called the two-stage recombination and then we test its performance in the context of the multiobjective 0/1 knapsack problem (MOKP). The proposed recombination operator generates only one offspring solution from a selected pair of parents according to the following two stages. In the first stage, called genetic shared-information stage or similarity-preserving stage, the generated offspring inherits all parent similar genes (i.e., genes or decision variables having the same positions and the same values in both parents). In the second stage, called problem fitness-information stage, the parent non-similar genes (i.e., genes or decision variables having the same positions but different values regarding the two parents) are selected from one of the two parents using some fitness information. Initially, we propose two different approaches for the second stage: the general version and the restricted version. However, the application of the restricted version to the MOKP leads to an improved version which is more specific to this problem. The general and the MOKP-specific versions of the two-stage recombination are compared against three traditional crossovers using two well-known multiobjective evolutionary algorithms. Promising results are obtained. We also provide a comparison between the general version and the MOKP-specific version.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>EISSN: 0305-0548</identifier><identifier>DOI: 10.1016/j.cor.2009.02.027</identifier><identifier>CODEN: CMORAP</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Crossover operators ; Decision theory. Utility theory ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Genetic algorithms ; Information sharing ; Knapsack problem ; Multiobjective 0/1 knapsack problem (MOKP) ; Multiobjective combinatorial optimization (MOCO) ; Multiobjective evolutionary algorithms (MOEAs) ; Operational research and scientific management ; Operational research. Management science ; Parents &amp; parenting ; Studies</subject><ispartof>Computers &amp; operations research, 2009-12, Vol.36 (12), p.3247-3262</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Dec 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-6184b21f0192acc587e397f36649484b7054d34758c90183bd137e7356a71f223</citedby><cites>FETCH-LOGICAL-c448t-6184b21f0192acc587e397f36649484b7054d34758c90183bd137e7356a71f223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cor.2009.02.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21691332$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Aghezzaf, Brahim</creatorcontrib><creatorcontrib>Naimi, Mohamed</creatorcontrib><title>The two-stage recombination operator and its application to the multiobjective 0/1 knapsack problem: A comparative study</title><title>Computers &amp; operations research</title><description>In this paper, we first propose a new recombination operator called the two-stage recombination and then we test its performance in the context of the multiobjective 0/1 knapsack problem (MOKP). The proposed recombination operator generates only one offspring solution from a selected pair of parents according to the following two stages. In the first stage, called genetic shared-information stage or similarity-preserving stage, the generated offspring inherits all parent similar genes (i.e., genes or decision variables having the same positions and the same values in both parents). In the second stage, called problem fitness-information stage, the parent non-similar genes (i.e., genes or decision variables having the same positions but different values regarding the two parents) are selected from one of the two parents using some fitness information. Initially, we propose two different approaches for the second stage: the general version and the restricted version. However, the application of the restricted version to the MOKP leads to an improved version which is more specific to this problem. The general and the MOKP-specific versions of the two-stage recombination are compared against three traditional crossovers using two well-known multiobjective evolutionary algorithms. Promising results are obtained. We also provide a comparison between the general version and the MOKP-specific version.</description><subject>Applied sciences</subject><subject>Crossover operators</subject><subject>Decision theory. Utility theory</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Genetic algorithms</subject><subject>Information sharing</subject><subject>Knapsack problem</subject><subject>Multiobjective 0/1 knapsack problem (MOKP)</subject><subject>Multiobjective combinatorial optimization (MOCO)</subject><subject>Multiobjective evolutionary algorithms (MOEAs)</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Parents &amp; parenting</subject><subject>Studies</subject><issn>0305-0548</issn><issn>1873-765X</issn><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kU2L1jAUhYso-Dr6A9wFQV31ndx8troaBr9gwM0I7kKa3mo6bVOTdHT-vSnv4MLFhAsh3Oee5ORU1UugR6CgzsejC_HIKG2PlJXSj6oDNJrXWsnvj6sD5VTWVIrmafUspZGWpRkcqj_XP5Hk36FO2f5AEtGFufOLzT4sJKwYbQ6R2KUnPidi13Xy7tTMgeQyO29TOXYjuuxvkdBzIDeLXZN1N2SNoZtwfkcuSJFdbRHbmZS3_u559WSwU8IX9_tZ9e3jh-vLz_XV109fLi-uaidEk2sFjegYDBRaZp2TjUbe6oErJVpRWrp46rnQsnEthYZ3PXCNmktlNQyM8bPq7Um3PObXhimb2SeH02QXDFsyWiiqFShRyDcPklxIQVuqC_jqP3AMW1yKCwOtbCQFBgWCE-RiSCniYNboZxvvDFCzR2ZGUyIze2SGslK78Ot7YZucnYZoF-fTv0EGqgXOd0_vTxyWj7v1GE1yHheHvS8BZtMH_8AtfwGOi6qg</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Aghezzaf, Brahim</creator><creator>Naimi, Mohamed</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20091201</creationdate><title>The two-stage recombination operator and its application to the multiobjective 0/1 knapsack problem: A comparative study</title><author>Aghezzaf, Brahim ; Naimi, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-6184b21f0192acc587e397f36649484b7054d34758c90183bd137e7356a71f223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Crossover operators</topic><topic>Decision theory. Utility theory</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Genetic algorithms</topic><topic>Information sharing</topic><topic>Knapsack problem</topic><topic>Multiobjective 0/1 knapsack problem (MOKP)</topic><topic>Multiobjective combinatorial optimization (MOCO)</topic><topic>Multiobjective evolutionary algorithms (MOEAs)</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Parents &amp; parenting</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aghezzaf, Brahim</creatorcontrib><creatorcontrib>Naimi, Mohamed</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Computers &amp; operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aghezzaf, Brahim</au><au>Naimi, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The two-stage recombination operator and its application to the multiobjective 0/1 knapsack problem: A comparative study</atitle><jtitle>Computers &amp; operations research</jtitle><date>2009-12-01</date><risdate>2009</risdate><volume>36</volume><issue>12</issue><spage>3247</spage><epage>3262</epage><pages>3247-3262</pages><issn>0305-0548</issn><eissn>1873-765X</eissn><eissn>0305-0548</eissn><coden>CMORAP</coden><abstract>In this paper, we first propose a new recombination operator called the two-stage recombination and then we test its performance in the context of the multiobjective 0/1 knapsack problem (MOKP). The proposed recombination operator generates only one offspring solution from a selected pair of parents according to the following two stages. In the first stage, called genetic shared-information stage or similarity-preserving stage, the generated offspring inherits all parent similar genes (i.e., genes or decision variables having the same positions and the same values in both parents). In the second stage, called problem fitness-information stage, the parent non-similar genes (i.e., genes or decision variables having the same positions but different values regarding the two parents) are selected from one of the two parents using some fitness information. Initially, we propose two different approaches for the second stage: the general version and the restricted version. However, the application of the restricted version to the MOKP leads to an improved version which is more specific to this problem. The general and the MOKP-specific versions of the two-stage recombination are compared against three traditional crossovers using two well-known multiobjective evolutionary algorithms. Promising results are obtained. We also provide a comparison between the general version and the MOKP-specific version.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cor.2009.02.027</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0305-0548
ispartof Computers & operations research, 2009-12, Vol.36 (12), p.3247-3262
issn 0305-0548
1873-765X
0305-0548
language eng
recordid cdi_proquest_miscellaneous_746076164
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Applied sciences
Crossover operators
Decision theory. Utility theory
Exact sciences and technology
Flows in networks. Combinatorial problems
Genetic algorithms
Information sharing
Knapsack problem
Multiobjective 0/1 knapsack problem (MOKP)
Multiobjective combinatorial optimization (MOCO)
Multiobjective evolutionary algorithms (MOEAs)
Operational research and scientific management
Operational research. Management science
Parents & parenting
Studies
title The two-stage recombination operator and its application to the multiobjective 0/1 knapsack problem: A comparative study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A05%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20two-stage%20recombination%20operator%20and%20its%20application%20to%20the%20multiobjective%200/1%20knapsack%20problem:%20A%20comparative%20study&rft.jtitle=Computers%20&%20operations%20research&rft.au=Aghezzaf,%20Brahim&rft.date=2009-12-01&rft.volume=36&rft.issue=12&rft.spage=3247&rft.epage=3262&rft.pages=3247-3262&rft.issn=0305-0548&rft.eissn=1873-765X&rft.coden=CMORAP&rft_id=info:doi/10.1016/j.cor.2009.02.027&rft_dat=%3Cproquest_cross%3E34540907%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195850121&rft_id=info:pmid/&rft_els_id=S0305054809000665&rfr_iscdi=true