A new, validated HPLC-MS/MS method for the simultaneous determination of the anti-cancer agent capecitabine and its metabolites: 5′-deoxy-5-fluorocytidine, 5′-deoxy-5-fluorouridine, 5-fluorouracil and 5-fluorodihydrouracil, in human plasma
A rapid and selective liquid chromatography/tandem mass spectrometric method was developed for the simultaneous determination of capecitabine and its metabolites 5′‐deoxy‐5‐fluorocytidine (5′‐DFCR), 5′‐deoxy‐5‐fluorouracil (5′‐DFUR), 5‐fluorouracil (5‐FU) and dihydro‐5‐fluorouracil (FUH2) in human p...
Gespeichert in:
Veröffentlicht in: | Biomedical chromatography 2010-04, Vol.24 (4), p.374-386 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 386 |
---|---|
container_issue | 4 |
container_start_page | 374 |
container_title | Biomedical chromatography |
container_volume | 24 |
creator | Vainchtein, Liia D. Rosing, Hilde Schellens, Jan H.M. Beijnen, Jos H. |
description | A rapid and selective liquid chromatography/tandem mass spectrometric method was developed for the simultaneous determination of capecitabine and its metabolites 5′‐deoxy‐5‐fluorocytidine (5′‐DFCR), 5′‐deoxy‐5‐fluorouracil (5′‐DFUR), 5‐fluorouracil (5‐FU) and dihydro‐5‐fluorouracil (FUH2) in human plasma. A 200 μL human plasma aliquot was spiked with a mixture of internal standards fludarabine and 5‐chlorouracil. A single‐step protein precipitation method was employed using 10% (v/v) trichloroacetic acid in water to separate analytes from bio‐matrices. Volumes of 20 μL of the supernatant were directly injected onto the HPLC system. Separation was achieved on a 30 × 2.1 mm Hypercarb (porous graphitic carbon) column using a gradient by mixing 10 mm ammonium acetate and acetonitrile–2‐propanol–tetrahydrofuran (1 : 3 : 2.25, v/v/v). The detection was performed using a Finnigan TSQ Quantum Ultra equipped with the electrospray ion source operated in positive and negative mode. The assay quantifies a range from 10 to 1000 ng/mL for capecitabine, from 10 to 5000 ng/mL for 5′‐DFCR and 5′‐DFUR, and from 50 to 5000 ng/mL for 5‐FU and FUH2 using a plasma sample of 200 μL. Correlation coefficients (r2) of the calibration curves in human plasma were better than 0.99 for all compounds. At all concentration levels, deviations of measured concentrations from nominal concentration were between −4.41 and 3.65% with CV values less than 12.0% for capecitabine, between −7.00 and 6.59% with CV values less than 13.0 for 5′‐DFUR, between −3.25 and 4.11% with CV values less than 9.34% for 5′‐DFCR, between −5.54 and 5.91% with CV values less than 9.69% for 5‐FU and between −4.26 and 6.86% with CV values less than 14.9% for FUH2. The described method was successfully applied for the evaluation of the pharmacokinetic profile of capecitabine and its metabolites in plasma of treated cancer patients. Copyright © 2009 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/bmc.1302 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746052332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>746052332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3902-4825bb215abd44117189d8d0c21ad7128cd40f0372592aa4439938ef8cb2b87c3</originalsourceid><addsrcrecordid>eNqFkstuEzEUhkcIRENB4gmQd7CIW19mYptdiaAFEkAqF4mNdcb2EMPMONge2ux4Jh6JV-AFSJqkbECsjnT-z9_i-C-K-5QcUULYcd2ZI8oJu1GMKFEKE0nozWJE2ERhLoU6KO6k9JkQoiZM3C4OqJpUhFZ0VPw6Qb27GKNv0HoL2Vl09mY2xfPz4_k56lxeBIuaEFFeOJR8N7QZeheGhKzLLna-h-xDj0JzRUCfPTbQGxcRfHJ9RgaWzvgMte83sUU-p40X6tD67NJjVP38_gNbFy5XuMJNO4QYzCp7u34w_ls4xH12vQDj2yv5fmX9YmX3yRj5Hi2GDnq0bCF1cLe41UCb3L3dPCzePXv6dnqGZ69Pn09PZthwRRguJavqmtEKaluWlAoqlZWWGEbBCsqksSVpCBesUgygLLlSXLpGmprVUhh-WDzcepcxfB1cyrrzybi23Z5Qi3JCKsY5-z_JuaCClRvy0ZY0MaQUXaOX0XcQV5oSvemCXndBb7qwRh_spEPdOfsH3H3-GsBb4MK3bvVPkX4yn-6EO96n7C6veYhf9ERwUekPr051Jal88f6j0C_5b-Hc0T8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733717242</pqid></control><display><type>article</type><title>A new, validated HPLC-MS/MS method for the simultaneous determination of the anti-cancer agent capecitabine and its metabolites: 5′-deoxy-5-fluorocytidine, 5′-deoxy-5-fluorouridine, 5-fluorouracil and 5-fluorodihydrouracil, in human plasma</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Vainchtein, Liia D. ; Rosing, Hilde ; Schellens, Jan H.M. ; Beijnen, Jos H.</creator><creatorcontrib>Vainchtein, Liia D. ; Rosing, Hilde ; Schellens, Jan H.M. ; Beijnen, Jos H.</creatorcontrib><description>A rapid and selective liquid chromatography/tandem mass spectrometric method was developed for the simultaneous determination of capecitabine and its metabolites 5′‐deoxy‐5‐fluorocytidine (5′‐DFCR), 5′‐deoxy‐5‐fluorouracil (5′‐DFUR), 5‐fluorouracil (5‐FU) and dihydro‐5‐fluorouracil (FUH2) in human plasma. A 200 μL human plasma aliquot was spiked with a mixture of internal standards fludarabine and 5‐chlorouracil. A single‐step protein precipitation method was employed using 10% (v/v) trichloroacetic acid in water to separate analytes from bio‐matrices. Volumes of 20 μL of the supernatant were directly injected onto the HPLC system. Separation was achieved on a 30 × 2.1 mm Hypercarb (porous graphitic carbon) column using a gradient by mixing 10 mm ammonium acetate and acetonitrile–2‐propanol–tetrahydrofuran (1 : 3 : 2.25, v/v/v). The detection was performed using a Finnigan TSQ Quantum Ultra equipped with the electrospray ion source operated in positive and negative mode. The assay quantifies a range from 10 to 1000 ng/mL for capecitabine, from 10 to 5000 ng/mL for 5′‐DFCR and 5′‐DFUR, and from 50 to 5000 ng/mL for 5‐FU and FUH2 using a plasma sample of 200 μL. Correlation coefficients (r2) of the calibration curves in human plasma were better than 0.99 for all compounds. At all concentration levels, deviations of measured concentrations from nominal concentration were between −4.41 and 3.65% with CV values less than 12.0% for capecitabine, between −7.00 and 6.59% with CV values less than 13.0 for 5′‐DFUR, between −3.25 and 4.11% with CV values less than 9.34% for 5′‐DFCR, between −5.54 and 5.91% with CV values less than 9.69% for 5‐FU and between −4.26 and 6.86% with CV values less than 14.9% for FUH2. The described method was successfully applied for the evaluation of the pharmacokinetic profile of capecitabine and its metabolites in plasma of treated cancer patients. Copyright © 2009 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0269-3879</identifier><identifier>EISSN: 1099-0801</identifier><identifier>DOI: 10.1002/bmc.1302</identifier><identifier>PMID: 19650151</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>1-Propanol - chemistry ; 5-FU ; Acetonitriles - chemistry ; Antimetabolites, Antineoplastic - blood ; Antimetabolites, Antineoplastic - chemistry ; Capecitabine ; Chemical Precipitation ; Chromatography, High Pressure Liquid - methods ; Deoxycytidine - analogs & derivatives ; Deoxycytidine - blood ; Deoxycytidine - chemistry ; Drug Stability ; Floxuridine - blood ; Floxuridine - chemistry ; Fluorouracil - analogs & derivatives ; Fluorouracil - blood ; Fluorouracil - chemistry ; Furans - chemistry ; Humans ; hypercarb ; Linear Models ; liquid chromatography ; mass spectrometry ; metabolites ; Pyrimidines - blood ; Pyrimidines - chemistry ; Reproducibility of Results ; Spectrometry, Mass, Electrospray Ionization ; Tandem Mass Spectrometry - methods ; Trichloroacetic Acid - chemistry ; Uracil - analogs & derivatives ; Uracil - chemistry ; Vidarabine - analogs & derivatives ; Vidarabine - chemistry</subject><ispartof>Biomedical chromatography, 2010-04, Vol.24 (4), p.374-386</ispartof><rights>Copyright © 2009 John Wiley & Sons, Ltd.</rights><rights>Copyright (c) 2009 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3902-4825bb215abd44117189d8d0c21ad7128cd40f0372592aa4439938ef8cb2b87c3</citedby><cites>FETCH-LOGICAL-c3902-4825bb215abd44117189d8d0c21ad7128cd40f0372592aa4439938ef8cb2b87c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbmc.1302$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbmc.1302$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19650151$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vainchtein, Liia D.</creatorcontrib><creatorcontrib>Rosing, Hilde</creatorcontrib><creatorcontrib>Schellens, Jan H.M.</creatorcontrib><creatorcontrib>Beijnen, Jos H.</creatorcontrib><title>A new, validated HPLC-MS/MS method for the simultaneous determination of the anti-cancer agent capecitabine and its metabolites: 5′-deoxy-5-fluorocytidine, 5′-deoxy-5-fluorouridine, 5-fluorouracil and 5-fluorodihydrouracil, in human plasma</title><title>Biomedical chromatography</title><addtitle>Biomed. Chromatogr</addtitle><description>A rapid and selective liquid chromatography/tandem mass spectrometric method was developed for the simultaneous determination of capecitabine and its metabolites 5′‐deoxy‐5‐fluorocytidine (5′‐DFCR), 5′‐deoxy‐5‐fluorouracil (5′‐DFUR), 5‐fluorouracil (5‐FU) and dihydro‐5‐fluorouracil (FUH2) in human plasma. A 200 μL human plasma aliquot was spiked with a mixture of internal standards fludarabine and 5‐chlorouracil. A single‐step protein precipitation method was employed using 10% (v/v) trichloroacetic acid in water to separate analytes from bio‐matrices. Volumes of 20 μL of the supernatant were directly injected onto the HPLC system. Separation was achieved on a 30 × 2.1 mm Hypercarb (porous graphitic carbon) column using a gradient by mixing 10 mm ammonium acetate and acetonitrile–2‐propanol–tetrahydrofuran (1 : 3 : 2.25, v/v/v). The detection was performed using a Finnigan TSQ Quantum Ultra equipped with the electrospray ion source operated in positive and negative mode. The assay quantifies a range from 10 to 1000 ng/mL for capecitabine, from 10 to 5000 ng/mL for 5′‐DFCR and 5′‐DFUR, and from 50 to 5000 ng/mL for 5‐FU and FUH2 using a plasma sample of 200 μL. Correlation coefficients (r2) of the calibration curves in human plasma were better than 0.99 for all compounds. At all concentration levels, deviations of measured concentrations from nominal concentration were between −4.41 and 3.65% with CV values less than 12.0% for capecitabine, between −7.00 and 6.59% with CV values less than 13.0 for 5′‐DFUR, between −3.25 and 4.11% with CV values less than 9.34% for 5′‐DFCR, between −5.54 and 5.91% with CV values less than 9.69% for 5‐FU and between −4.26 and 6.86% with CV values less than 14.9% for FUH2. The described method was successfully applied for the evaluation of the pharmacokinetic profile of capecitabine and its metabolites in plasma of treated cancer patients. Copyright © 2009 John Wiley & Sons, Ltd.</description><subject>1-Propanol - chemistry</subject><subject>5-FU</subject><subject>Acetonitriles - chemistry</subject><subject>Antimetabolites, Antineoplastic - blood</subject><subject>Antimetabolites, Antineoplastic - chemistry</subject><subject>Capecitabine</subject><subject>Chemical Precipitation</subject><subject>Chromatography, High Pressure Liquid - methods</subject><subject>Deoxycytidine - analogs & derivatives</subject><subject>Deoxycytidine - blood</subject><subject>Deoxycytidine - chemistry</subject><subject>Drug Stability</subject><subject>Floxuridine - blood</subject><subject>Floxuridine - chemistry</subject><subject>Fluorouracil - analogs & derivatives</subject><subject>Fluorouracil - blood</subject><subject>Fluorouracil - chemistry</subject><subject>Furans - chemistry</subject><subject>Humans</subject><subject>hypercarb</subject><subject>Linear Models</subject><subject>liquid chromatography</subject><subject>mass spectrometry</subject><subject>metabolites</subject><subject>Pyrimidines - blood</subject><subject>Pyrimidines - chemistry</subject><subject>Reproducibility of Results</subject><subject>Spectrometry, Mass, Electrospray Ionization</subject><subject>Tandem Mass Spectrometry - methods</subject><subject>Trichloroacetic Acid - chemistry</subject><subject>Uracil - analogs & derivatives</subject><subject>Uracil - chemistry</subject><subject>Vidarabine - analogs & derivatives</subject><subject>Vidarabine - chemistry</subject><issn>0269-3879</issn><issn>1099-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkstuEzEUhkcIRENB4gmQd7CIW19mYptdiaAFEkAqF4mNdcb2EMPMONge2ux4Jh6JV-AFSJqkbECsjnT-z9_i-C-K-5QcUULYcd2ZI8oJu1GMKFEKE0nozWJE2ERhLoU6KO6k9JkQoiZM3C4OqJpUhFZ0VPw6Qb27GKNv0HoL2Vl09mY2xfPz4_k56lxeBIuaEFFeOJR8N7QZeheGhKzLLna-h-xDj0JzRUCfPTbQGxcRfHJ9RgaWzvgMte83sUU-p40X6tD67NJjVP38_gNbFy5XuMJNO4QYzCp7u34w_ls4xH12vQDj2yv5fmX9YmX3yRj5Hi2GDnq0bCF1cLe41UCb3L3dPCzePXv6dnqGZ69Pn09PZthwRRguJavqmtEKaluWlAoqlZWWGEbBCsqksSVpCBesUgygLLlSXLpGmprVUhh-WDzcepcxfB1cyrrzybi23Z5Qi3JCKsY5-z_JuaCClRvy0ZY0MaQUXaOX0XcQV5oSvemCXndBb7qwRh_spEPdOfsH3H3-GsBb4MK3bvVPkX4yn-6EO96n7C6veYhf9ERwUekPr051Jal88f6j0C_5b-Hc0T8</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Vainchtein, Liia D.</creator><creator>Rosing, Hilde</creator><creator>Schellens, Jan H.M.</creator><creator>Beijnen, Jos H.</creator><general>John Wiley & Sons, Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201004</creationdate><title>A new, validated HPLC-MS/MS method for the simultaneous determination of the anti-cancer agent capecitabine and its metabolites: 5′-deoxy-5-fluorocytidine, 5′-deoxy-5-fluorouridine, 5-fluorouracil and 5-fluorodihydrouracil, in human plasma</title><author>Vainchtein, Liia D. ; Rosing, Hilde ; Schellens, Jan H.M. ; Beijnen, Jos H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3902-4825bb215abd44117189d8d0c21ad7128cd40f0372592aa4439938ef8cb2b87c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>1-Propanol - chemistry</topic><topic>5-FU</topic><topic>Acetonitriles - chemistry</topic><topic>Antimetabolites, Antineoplastic - blood</topic><topic>Antimetabolites, Antineoplastic - chemistry</topic><topic>Capecitabine</topic><topic>Chemical Precipitation</topic><topic>Chromatography, High Pressure Liquid - methods</topic><topic>Deoxycytidine - analogs & derivatives</topic><topic>Deoxycytidine - blood</topic><topic>Deoxycytidine - chemistry</topic><topic>Drug Stability</topic><topic>Floxuridine - blood</topic><topic>Floxuridine - chemistry</topic><topic>Fluorouracil - analogs & derivatives</topic><topic>Fluorouracil - blood</topic><topic>Fluorouracil - chemistry</topic><topic>Furans - chemistry</topic><topic>Humans</topic><topic>hypercarb</topic><topic>Linear Models</topic><topic>liquid chromatography</topic><topic>mass spectrometry</topic><topic>metabolites</topic><topic>Pyrimidines - blood</topic><topic>Pyrimidines - chemistry</topic><topic>Reproducibility of Results</topic><topic>Spectrometry, Mass, Electrospray Ionization</topic><topic>Tandem Mass Spectrometry - methods</topic><topic>Trichloroacetic Acid - chemistry</topic><topic>Uracil - analogs & derivatives</topic><topic>Uracil - chemistry</topic><topic>Vidarabine - analogs & derivatives</topic><topic>Vidarabine - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vainchtein, Liia D.</creatorcontrib><creatorcontrib>Rosing, Hilde</creatorcontrib><creatorcontrib>Schellens, Jan H.M.</creatorcontrib><creatorcontrib>Beijnen, Jos H.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biomedical chromatography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vainchtein, Liia D.</au><au>Rosing, Hilde</au><au>Schellens, Jan H.M.</au><au>Beijnen, Jos H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new, validated HPLC-MS/MS method for the simultaneous determination of the anti-cancer agent capecitabine and its metabolites: 5′-deoxy-5-fluorocytidine, 5′-deoxy-5-fluorouridine, 5-fluorouracil and 5-fluorodihydrouracil, in human plasma</atitle><jtitle>Biomedical chromatography</jtitle><addtitle>Biomed. Chromatogr</addtitle><date>2010-04</date><risdate>2010</risdate><volume>24</volume><issue>4</issue><spage>374</spage><epage>386</epage><pages>374-386</pages><issn>0269-3879</issn><eissn>1099-0801</eissn><abstract>A rapid and selective liquid chromatography/tandem mass spectrometric method was developed for the simultaneous determination of capecitabine and its metabolites 5′‐deoxy‐5‐fluorocytidine (5′‐DFCR), 5′‐deoxy‐5‐fluorouracil (5′‐DFUR), 5‐fluorouracil (5‐FU) and dihydro‐5‐fluorouracil (FUH2) in human plasma. A 200 μL human plasma aliquot was spiked with a mixture of internal standards fludarabine and 5‐chlorouracil. A single‐step protein precipitation method was employed using 10% (v/v) trichloroacetic acid in water to separate analytes from bio‐matrices. Volumes of 20 μL of the supernatant were directly injected onto the HPLC system. Separation was achieved on a 30 × 2.1 mm Hypercarb (porous graphitic carbon) column using a gradient by mixing 10 mm ammonium acetate and acetonitrile–2‐propanol–tetrahydrofuran (1 : 3 : 2.25, v/v/v). The detection was performed using a Finnigan TSQ Quantum Ultra equipped with the electrospray ion source operated in positive and negative mode. The assay quantifies a range from 10 to 1000 ng/mL for capecitabine, from 10 to 5000 ng/mL for 5′‐DFCR and 5′‐DFUR, and from 50 to 5000 ng/mL for 5‐FU and FUH2 using a plasma sample of 200 μL. Correlation coefficients (r2) of the calibration curves in human plasma were better than 0.99 for all compounds. At all concentration levels, deviations of measured concentrations from nominal concentration were between −4.41 and 3.65% with CV values less than 12.0% for capecitabine, between −7.00 and 6.59% with CV values less than 13.0 for 5′‐DFUR, between −3.25 and 4.11% with CV values less than 9.34% for 5′‐DFCR, between −5.54 and 5.91% with CV values less than 9.69% for 5‐FU and between −4.26 and 6.86% with CV values less than 14.9% for FUH2. The described method was successfully applied for the evaluation of the pharmacokinetic profile of capecitabine and its metabolites in plasma of treated cancer patients. Copyright © 2009 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>19650151</pmid><doi>10.1002/bmc.1302</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0269-3879 |
ispartof | Biomedical chromatography, 2010-04, Vol.24 (4), p.374-386 |
issn | 0269-3879 1099-0801 |
language | eng |
recordid | cdi_proquest_miscellaneous_746052332 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | 1-Propanol - chemistry 5-FU Acetonitriles - chemistry Antimetabolites, Antineoplastic - blood Antimetabolites, Antineoplastic - chemistry Capecitabine Chemical Precipitation Chromatography, High Pressure Liquid - methods Deoxycytidine - analogs & derivatives Deoxycytidine - blood Deoxycytidine - chemistry Drug Stability Floxuridine - blood Floxuridine - chemistry Fluorouracil - analogs & derivatives Fluorouracil - blood Fluorouracil - chemistry Furans - chemistry Humans hypercarb Linear Models liquid chromatography mass spectrometry metabolites Pyrimidines - blood Pyrimidines - chemistry Reproducibility of Results Spectrometry, Mass, Electrospray Ionization Tandem Mass Spectrometry - methods Trichloroacetic Acid - chemistry Uracil - analogs & derivatives Uracil - chemistry Vidarabine - analogs & derivatives Vidarabine - chemistry |
title | A new, validated HPLC-MS/MS method for the simultaneous determination of the anti-cancer agent capecitabine and its metabolites: 5′-deoxy-5-fluorocytidine, 5′-deoxy-5-fluorouridine, 5-fluorouracil and 5-fluorodihydrouracil, in human plasma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A14%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new,%20validated%20HPLC-MS/MS%20method%20for%20the%20simultaneous%20determination%20of%20the%20anti-cancer%20agent%20capecitabine%20and%20its%20metabolites:%205%E2%80%B2-deoxy-5-fluorocytidine,%205%E2%80%B2-deoxy-5-fluorouridine,%205-fluorouracil%20and%205-fluorodihydrouracil,%20in%20human%20plasma&rft.jtitle=Biomedical%20chromatography&rft.au=Vainchtein,%20Liia%20D.&rft.date=2010-04&rft.volume=24&rft.issue=4&rft.spage=374&rft.epage=386&rft.pages=374-386&rft.issn=0269-3879&rft.eissn=1099-0801&rft_id=info:doi/10.1002/bmc.1302&rft_dat=%3Cproquest_cross%3E746052332%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733717242&rft_id=info:pmid/19650151&rfr_iscdi=true |