A new, validated HPLC-MS/MS method for the simultaneous determination of the anti-cancer agent capecitabine and its metabolites: 5′-deoxy-5-fluorocytidine, 5′-deoxy-5-fluorouridine, 5-fluorouracil and 5-fluorodihydrouracil, in human plasma

A rapid and selective liquid chromatography/tandem mass spectrometric method was developed for the simultaneous determination of capecitabine and its metabolites 5′‐deoxy‐5‐fluorocytidine (5′‐DFCR), 5′‐deoxy‐5‐fluorouracil (5′‐DFUR), 5‐fluorouracil (5‐FU) and dihydro‐5‐fluorouracil (FUH2) in human p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical chromatography 2010-04, Vol.24 (4), p.374-386
Hauptverfasser: Vainchtein, Liia D., Rosing, Hilde, Schellens, Jan H.M., Beijnen, Jos H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 386
container_issue 4
container_start_page 374
container_title Biomedical chromatography
container_volume 24
creator Vainchtein, Liia D.
Rosing, Hilde
Schellens, Jan H.M.
Beijnen, Jos H.
description A rapid and selective liquid chromatography/tandem mass spectrometric method was developed for the simultaneous determination of capecitabine and its metabolites 5′‐deoxy‐5‐fluorocytidine (5′‐DFCR), 5′‐deoxy‐5‐fluorouracil (5′‐DFUR), 5‐fluorouracil (5‐FU) and dihydro‐5‐fluorouracil (FUH2) in human plasma. A 200 μL human plasma aliquot was spiked with a mixture of internal standards fludarabine and 5‐chlorouracil. A single‐step protein precipitation method was employed using 10% (v/v) trichloroacetic acid in water to separate analytes from bio‐matrices. Volumes of 20 μL of the supernatant were directly injected onto the HPLC system. Separation was achieved on a 30 × 2.1 mm Hypercarb (porous graphitic carbon) column using a gradient by mixing 10 mm ammonium acetate and acetonitrile–2‐propanol–tetrahydrofuran (1 : 3 : 2.25, v/v/v). The detection was performed using a Finnigan TSQ Quantum Ultra equipped with the electrospray ion source operated in positive and negative mode. The assay quantifies a range from 10 to 1000 ng/mL for capecitabine, from 10 to 5000 ng/mL for 5′‐DFCR and 5′‐DFUR, and from 50 to 5000 ng/mL for 5‐FU and FUH2 using a plasma sample of 200 μL. Correlation coefficients (r2) of the calibration curves in human plasma were better than 0.99 for all compounds. At all concentration levels, deviations of measured concentrations from nominal concentration were between −4.41 and 3.65% with CV values less than 12.0% for capecitabine, between −7.00 and 6.59% with CV values less than 13.0 for 5′‐DFUR, between −3.25 and 4.11% with CV values less than 9.34% for 5′‐DFCR, between −5.54 and 5.91% with CV values less than 9.69% for 5‐FU and between −4.26 and 6.86% with CV values less than 14.9% for FUH2. The described method was successfully applied for the evaluation of the pharmacokinetic profile of capecitabine and its metabolites in plasma of treated cancer patients. Copyright © 2009 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/bmc.1302
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746052332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>746052332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3902-4825bb215abd44117189d8d0c21ad7128cd40f0372592aa4439938ef8cb2b87c3</originalsourceid><addsrcrecordid>eNqFkstuEzEUhkcIRENB4gmQd7CIW19mYptdiaAFEkAqF4mNdcb2EMPMONge2ux4Jh6JV-AFSJqkbECsjnT-z9_i-C-K-5QcUULYcd2ZI8oJu1GMKFEKE0nozWJE2ERhLoU6KO6k9JkQoiZM3C4OqJpUhFZ0VPw6Qb27GKNv0HoL2Vl09mY2xfPz4_k56lxeBIuaEFFeOJR8N7QZeheGhKzLLna-h-xDj0JzRUCfPTbQGxcRfHJ9RgaWzvgMte83sUU-p40X6tD67NJjVP38_gNbFy5XuMJNO4QYzCp7u34w_ls4xH12vQDj2yv5fmX9YmX3yRj5Hi2GDnq0bCF1cLe41UCb3L3dPCzePXv6dnqGZ69Pn09PZthwRRguJavqmtEKaluWlAoqlZWWGEbBCsqksSVpCBesUgygLLlSXLpGmprVUhh-WDzcepcxfB1cyrrzybi23Z5Qi3JCKsY5-z_JuaCClRvy0ZY0MaQUXaOX0XcQV5oSvemCXndBb7qwRh_spEPdOfsH3H3-GsBb4MK3bvVPkX4yn-6EO96n7C6veYhf9ERwUekPr051Jal88f6j0C_5b-Hc0T8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733717242</pqid></control><display><type>article</type><title>A new, validated HPLC-MS/MS method for the simultaneous determination of the anti-cancer agent capecitabine and its metabolites: 5′-deoxy-5-fluorocytidine, 5′-deoxy-5-fluorouridine, 5-fluorouracil and 5-fluorodihydrouracil, in human plasma</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Vainchtein, Liia D. ; Rosing, Hilde ; Schellens, Jan H.M. ; Beijnen, Jos H.</creator><creatorcontrib>Vainchtein, Liia D. ; Rosing, Hilde ; Schellens, Jan H.M. ; Beijnen, Jos H.</creatorcontrib><description>A rapid and selective liquid chromatography/tandem mass spectrometric method was developed for the simultaneous determination of capecitabine and its metabolites 5′‐deoxy‐5‐fluorocytidine (5′‐DFCR), 5′‐deoxy‐5‐fluorouracil (5′‐DFUR), 5‐fluorouracil (5‐FU) and dihydro‐5‐fluorouracil (FUH2) in human plasma. A 200 μL human plasma aliquot was spiked with a mixture of internal standards fludarabine and 5‐chlorouracil. A single‐step protein precipitation method was employed using 10% (v/v) trichloroacetic acid in water to separate analytes from bio‐matrices. Volumes of 20 μL of the supernatant were directly injected onto the HPLC system. Separation was achieved on a 30 × 2.1 mm Hypercarb (porous graphitic carbon) column using a gradient by mixing 10 mm ammonium acetate and acetonitrile–2‐propanol–tetrahydrofuran (1 : 3 : 2.25, v/v/v). The detection was performed using a Finnigan TSQ Quantum Ultra equipped with the electrospray ion source operated in positive and negative mode. The assay quantifies a range from 10 to 1000 ng/mL for capecitabine, from 10 to 5000 ng/mL for 5′‐DFCR and 5′‐DFUR, and from 50 to 5000 ng/mL for 5‐FU and FUH2 using a plasma sample of 200 μL. Correlation coefficients (r2) of the calibration curves in human plasma were better than 0.99 for all compounds. At all concentration levels, deviations of measured concentrations from nominal concentration were between −4.41 and 3.65% with CV values less than 12.0% for capecitabine, between −7.00 and 6.59% with CV values less than 13.0 for 5′‐DFUR, between −3.25 and 4.11% with CV values less than 9.34% for 5′‐DFCR, between −5.54 and 5.91% with CV values less than 9.69% for 5‐FU and between −4.26 and 6.86% with CV values less than 14.9% for FUH2. The described method was successfully applied for the evaluation of the pharmacokinetic profile of capecitabine and its metabolites in plasma of treated cancer patients. Copyright © 2009 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0269-3879</identifier><identifier>EISSN: 1099-0801</identifier><identifier>DOI: 10.1002/bmc.1302</identifier><identifier>PMID: 19650151</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>1-Propanol - chemistry ; 5-FU ; Acetonitriles - chemistry ; Antimetabolites, Antineoplastic - blood ; Antimetabolites, Antineoplastic - chemistry ; Capecitabine ; Chemical Precipitation ; Chromatography, High Pressure Liquid - methods ; Deoxycytidine - analogs &amp; derivatives ; Deoxycytidine - blood ; Deoxycytidine - chemistry ; Drug Stability ; Floxuridine - blood ; Floxuridine - chemistry ; Fluorouracil - analogs &amp; derivatives ; Fluorouracil - blood ; Fluorouracil - chemistry ; Furans - chemistry ; Humans ; hypercarb ; Linear Models ; liquid chromatography ; mass spectrometry ; metabolites ; Pyrimidines - blood ; Pyrimidines - chemistry ; Reproducibility of Results ; Spectrometry, Mass, Electrospray Ionization ; Tandem Mass Spectrometry - methods ; Trichloroacetic Acid - chemistry ; Uracil - analogs &amp; derivatives ; Uracil - chemistry ; Vidarabine - analogs &amp; derivatives ; Vidarabine - chemistry</subject><ispartof>Biomedical chromatography, 2010-04, Vol.24 (4), p.374-386</ispartof><rights>Copyright © 2009 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright (c) 2009 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3902-4825bb215abd44117189d8d0c21ad7128cd40f0372592aa4439938ef8cb2b87c3</citedby><cites>FETCH-LOGICAL-c3902-4825bb215abd44117189d8d0c21ad7128cd40f0372592aa4439938ef8cb2b87c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbmc.1302$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbmc.1302$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19650151$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vainchtein, Liia D.</creatorcontrib><creatorcontrib>Rosing, Hilde</creatorcontrib><creatorcontrib>Schellens, Jan H.M.</creatorcontrib><creatorcontrib>Beijnen, Jos H.</creatorcontrib><title>A new, validated HPLC-MS/MS method for the simultaneous determination of the anti-cancer agent capecitabine and its metabolites: 5′-deoxy-5-fluorocytidine, 5′-deoxy-5-fluorouridine, 5-fluorouracil and 5-fluorodihydrouracil, in human plasma</title><title>Biomedical chromatography</title><addtitle>Biomed. Chromatogr</addtitle><description>A rapid and selective liquid chromatography/tandem mass spectrometric method was developed for the simultaneous determination of capecitabine and its metabolites 5′‐deoxy‐5‐fluorocytidine (5′‐DFCR), 5′‐deoxy‐5‐fluorouracil (5′‐DFUR), 5‐fluorouracil (5‐FU) and dihydro‐5‐fluorouracil (FUH2) in human plasma. A 200 μL human plasma aliquot was spiked with a mixture of internal standards fludarabine and 5‐chlorouracil. A single‐step protein precipitation method was employed using 10% (v/v) trichloroacetic acid in water to separate analytes from bio‐matrices. Volumes of 20 μL of the supernatant were directly injected onto the HPLC system. Separation was achieved on a 30 × 2.1 mm Hypercarb (porous graphitic carbon) column using a gradient by mixing 10 mm ammonium acetate and acetonitrile–2‐propanol–tetrahydrofuran (1 : 3 : 2.25, v/v/v). The detection was performed using a Finnigan TSQ Quantum Ultra equipped with the electrospray ion source operated in positive and negative mode. The assay quantifies a range from 10 to 1000 ng/mL for capecitabine, from 10 to 5000 ng/mL for 5′‐DFCR and 5′‐DFUR, and from 50 to 5000 ng/mL for 5‐FU and FUH2 using a plasma sample of 200 μL. Correlation coefficients (r2) of the calibration curves in human plasma were better than 0.99 for all compounds. At all concentration levels, deviations of measured concentrations from nominal concentration were between −4.41 and 3.65% with CV values less than 12.0% for capecitabine, between −7.00 and 6.59% with CV values less than 13.0 for 5′‐DFUR, between −3.25 and 4.11% with CV values less than 9.34% for 5′‐DFCR, between −5.54 and 5.91% with CV values less than 9.69% for 5‐FU and between −4.26 and 6.86% with CV values less than 14.9% for FUH2. The described method was successfully applied for the evaluation of the pharmacokinetic profile of capecitabine and its metabolites in plasma of treated cancer patients. Copyright © 2009 John Wiley &amp; Sons, Ltd.</description><subject>1-Propanol - chemistry</subject><subject>5-FU</subject><subject>Acetonitriles - chemistry</subject><subject>Antimetabolites, Antineoplastic - blood</subject><subject>Antimetabolites, Antineoplastic - chemistry</subject><subject>Capecitabine</subject><subject>Chemical Precipitation</subject><subject>Chromatography, High Pressure Liquid - methods</subject><subject>Deoxycytidine - analogs &amp; derivatives</subject><subject>Deoxycytidine - blood</subject><subject>Deoxycytidine - chemistry</subject><subject>Drug Stability</subject><subject>Floxuridine - blood</subject><subject>Floxuridine - chemistry</subject><subject>Fluorouracil - analogs &amp; derivatives</subject><subject>Fluorouracil - blood</subject><subject>Fluorouracil - chemistry</subject><subject>Furans - chemistry</subject><subject>Humans</subject><subject>hypercarb</subject><subject>Linear Models</subject><subject>liquid chromatography</subject><subject>mass spectrometry</subject><subject>metabolites</subject><subject>Pyrimidines - blood</subject><subject>Pyrimidines - chemistry</subject><subject>Reproducibility of Results</subject><subject>Spectrometry, Mass, Electrospray Ionization</subject><subject>Tandem Mass Spectrometry - methods</subject><subject>Trichloroacetic Acid - chemistry</subject><subject>Uracil - analogs &amp; derivatives</subject><subject>Uracil - chemistry</subject><subject>Vidarabine - analogs &amp; derivatives</subject><subject>Vidarabine - chemistry</subject><issn>0269-3879</issn><issn>1099-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkstuEzEUhkcIRENB4gmQd7CIW19mYptdiaAFEkAqF4mNdcb2EMPMONge2ux4Jh6JV-AFSJqkbECsjnT-z9_i-C-K-5QcUULYcd2ZI8oJu1GMKFEKE0nozWJE2ERhLoU6KO6k9JkQoiZM3C4OqJpUhFZ0VPw6Qb27GKNv0HoL2Vl09mY2xfPz4_k56lxeBIuaEFFeOJR8N7QZeheGhKzLLna-h-xDj0JzRUCfPTbQGxcRfHJ9RgaWzvgMte83sUU-p40X6tD67NJjVP38_gNbFy5XuMJNO4QYzCp7u34w_ls4xH12vQDj2yv5fmX9YmX3yRj5Hi2GDnq0bCF1cLe41UCb3L3dPCzePXv6dnqGZ69Pn09PZthwRRguJavqmtEKaluWlAoqlZWWGEbBCsqksSVpCBesUgygLLlSXLpGmprVUhh-WDzcepcxfB1cyrrzybi23Z5Qi3JCKsY5-z_JuaCClRvy0ZY0MaQUXaOX0XcQV5oSvemCXndBb7qwRh_spEPdOfsH3H3-GsBb4MK3bvVPkX4yn-6EO96n7C6veYhf9ERwUekPr051Jal88f6j0C_5b-Hc0T8</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Vainchtein, Liia D.</creator><creator>Rosing, Hilde</creator><creator>Schellens, Jan H.M.</creator><creator>Beijnen, Jos H.</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201004</creationdate><title>A new, validated HPLC-MS/MS method for the simultaneous determination of the anti-cancer agent capecitabine and its metabolites: 5′-deoxy-5-fluorocytidine, 5′-deoxy-5-fluorouridine, 5-fluorouracil and 5-fluorodihydrouracil, in human plasma</title><author>Vainchtein, Liia D. ; Rosing, Hilde ; Schellens, Jan H.M. ; Beijnen, Jos H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3902-4825bb215abd44117189d8d0c21ad7128cd40f0372592aa4439938ef8cb2b87c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>1-Propanol - chemistry</topic><topic>5-FU</topic><topic>Acetonitriles - chemistry</topic><topic>Antimetabolites, Antineoplastic - blood</topic><topic>Antimetabolites, Antineoplastic - chemistry</topic><topic>Capecitabine</topic><topic>Chemical Precipitation</topic><topic>Chromatography, High Pressure Liquid - methods</topic><topic>Deoxycytidine - analogs &amp; derivatives</topic><topic>Deoxycytidine - blood</topic><topic>Deoxycytidine - chemistry</topic><topic>Drug Stability</topic><topic>Floxuridine - blood</topic><topic>Floxuridine - chemistry</topic><topic>Fluorouracil - analogs &amp; derivatives</topic><topic>Fluorouracil - blood</topic><topic>Fluorouracil - chemistry</topic><topic>Furans - chemistry</topic><topic>Humans</topic><topic>hypercarb</topic><topic>Linear Models</topic><topic>liquid chromatography</topic><topic>mass spectrometry</topic><topic>metabolites</topic><topic>Pyrimidines - blood</topic><topic>Pyrimidines - chemistry</topic><topic>Reproducibility of Results</topic><topic>Spectrometry, Mass, Electrospray Ionization</topic><topic>Tandem Mass Spectrometry - methods</topic><topic>Trichloroacetic Acid - chemistry</topic><topic>Uracil - analogs &amp; derivatives</topic><topic>Uracil - chemistry</topic><topic>Vidarabine - analogs &amp; derivatives</topic><topic>Vidarabine - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vainchtein, Liia D.</creatorcontrib><creatorcontrib>Rosing, Hilde</creatorcontrib><creatorcontrib>Schellens, Jan H.M.</creatorcontrib><creatorcontrib>Beijnen, Jos H.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biomedical chromatography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vainchtein, Liia D.</au><au>Rosing, Hilde</au><au>Schellens, Jan H.M.</au><au>Beijnen, Jos H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new, validated HPLC-MS/MS method for the simultaneous determination of the anti-cancer agent capecitabine and its metabolites: 5′-deoxy-5-fluorocytidine, 5′-deoxy-5-fluorouridine, 5-fluorouracil and 5-fluorodihydrouracil, in human plasma</atitle><jtitle>Biomedical chromatography</jtitle><addtitle>Biomed. Chromatogr</addtitle><date>2010-04</date><risdate>2010</risdate><volume>24</volume><issue>4</issue><spage>374</spage><epage>386</epage><pages>374-386</pages><issn>0269-3879</issn><eissn>1099-0801</eissn><abstract>A rapid and selective liquid chromatography/tandem mass spectrometric method was developed for the simultaneous determination of capecitabine and its metabolites 5′‐deoxy‐5‐fluorocytidine (5′‐DFCR), 5′‐deoxy‐5‐fluorouracil (5′‐DFUR), 5‐fluorouracil (5‐FU) and dihydro‐5‐fluorouracil (FUH2) in human plasma. A 200 μL human plasma aliquot was spiked with a mixture of internal standards fludarabine and 5‐chlorouracil. A single‐step protein precipitation method was employed using 10% (v/v) trichloroacetic acid in water to separate analytes from bio‐matrices. Volumes of 20 μL of the supernatant were directly injected onto the HPLC system. Separation was achieved on a 30 × 2.1 mm Hypercarb (porous graphitic carbon) column using a gradient by mixing 10 mm ammonium acetate and acetonitrile–2‐propanol–tetrahydrofuran (1 : 3 : 2.25, v/v/v). The detection was performed using a Finnigan TSQ Quantum Ultra equipped with the electrospray ion source operated in positive and negative mode. The assay quantifies a range from 10 to 1000 ng/mL for capecitabine, from 10 to 5000 ng/mL for 5′‐DFCR and 5′‐DFUR, and from 50 to 5000 ng/mL for 5‐FU and FUH2 using a plasma sample of 200 μL. Correlation coefficients (r2) of the calibration curves in human plasma were better than 0.99 for all compounds. At all concentration levels, deviations of measured concentrations from nominal concentration were between −4.41 and 3.65% with CV values less than 12.0% for capecitabine, between −7.00 and 6.59% with CV values less than 13.0 for 5′‐DFUR, between −3.25 and 4.11% with CV values less than 9.34% for 5′‐DFCR, between −5.54 and 5.91% with CV values less than 9.69% for 5‐FU and between −4.26 and 6.86% with CV values less than 14.9% for FUH2. The described method was successfully applied for the evaluation of the pharmacokinetic profile of capecitabine and its metabolites in plasma of treated cancer patients. Copyright © 2009 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>19650151</pmid><doi>10.1002/bmc.1302</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0269-3879
ispartof Biomedical chromatography, 2010-04, Vol.24 (4), p.374-386
issn 0269-3879
1099-0801
language eng
recordid cdi_proquest_miscellaneous_746052332
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects 1-Propanol - chemistry
5-FU
Acetonitriles - chemistry
Antimetabolites, Antineoplastic - blood
Antimetabolites, Antineoplastic - chemistry
Capecitabine
Chemical Precipitation
Chromatography, High Pressure Liquid - methods
Deoxycytidine - analogs & derivatives
Deoxycytidine - blood
Deoxycytidine - chemistry
Drug Stability
Floxuridine - blood
Floxuridine - chemistry
Fluorouracil - analogs & derivatives
Fluorouracil - blood
Fluorouracil - chemistry
Furans - chemistry
Humans
hypercarb
Linear Models
liquid chromatography
mass spectrometry
metabolites
Pyrimidines - blood
Pyrimidines - chemistry
Reproducibility of Results
Spectrometry, Mass, Electrospray Ionization
Tandem Mass Spectrometry - methods
Trichloroacetic Acid - chemistry
Uracil - analogs & derivatives
Uracil - chemistry
Vidarabine - analogs & derivatives
Vidarabine - chemistry
title A new, validated HPLC-MS/MS method for the simultaneous determination of the anti-cancer agent capecitabine and its metabolites: 5′-deoxy-5-fluorocytidine, 5′-deoxy-5-fluorouridine, 5-fluorouracil and 5-fluorodihydrouracil, in human plasma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A14%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new,%20validated%20HPLC-MS/MS%20method%20for%20the%20simultaneous%20determination%20of%20the%20anti-cancer%20agent%20capecitabine%20and%20its%20metabolites:%205%E2%80%B2-deoxy-5-fluorocytidine,%205%E2%80%B2-deoxy-5-fluorouridine,%205-fluorouracil%20and%205-fluorodihydrouracil,%20in%20human%20plasma&rft.jtitle=Biomedical%20chromatography&rft.au=Vainchtein,%20Liia%20D.&rft.date=2010-04&rft.volume=24&rft.issue=4&rft.spage=374&rft.epage=386&rft.pages=374-386&rft.issn=0269-3879&rft.eissn=1099-0801&rft_id=info:doi/10.1002/bmc.1302&rft_dat=%3Cproquest_cross%3E746052332%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733717242&rft_id=info:pmid/19650151&rfr_iscdi=true