Molar heat capacity of constant volume of difluoromethane (R32) and pentafluoroethane (R125) from the triple-point temperature to 345 K at pressures to 35 MPa

Molar heat capacities at constant volume (C sub(v)) of difluoromethane (R32) and pentafluoroethane (R125) were measured with an adiabatic calorimeter. Temperatures ranged from their triple points to 345 K, and pressures up to 35 MPa. Measurements were conducted on the liquid in equilibrium with its...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Thermophysics 1996-07, Vol.17 (4), p.823-849
Hauptverfasser: LÜDDECKE, T. O, MAGEE, J. W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 849
container_issue 4
container_start_page 823
container_title International Journal of Thermophysics
container_volume 17
creator LÜDDECKE, T. O
MAGEE, J. W
description Molar heat capacities at constant volume (C sub(v)) of difluoromethane (R32) and pentafluoroethane (R125) were measured with an adiabatic calorimeter. Temperatures ranged from their triple points to 345 K, and pressures up to 35 MPa. Measurements were conducted on the liquid in equilibrium with its vapor and on compressed liquid samples. The samples were of a high purity, verified by chemical analysis of each fluid. For the samples, calorimetric results were obtained for two-phase (C super(() sub(v) super(2))), saturated liquid (C sub( sigma ) or C' sub(x)), and single-phase (C sub(v)) molar heat capacities. The C sub( sigma ) data were used to estimate vapor pressures for values less than 0.3 MPa by applying a thermodynamic relationship between the saturated liquid heat capacity and the temperature derivatives of the vapor pressure. The triple-point temperature (T sub(tr)) and the enthalpy of fusion ( Delta sub(fus)H) were also measured for each substance. The principal sources of uncertainty are the temperature rise measurement and the change-of-volume work adjustment. The expanded uncertainty (at the two-sigma level) for C sub(v) is estimated to be 0.7%, for C super(() sub(v) super(2)) it is 0.5%, and for C sub( sigma ) it is 0.7%.
doi_str_mv 10.1007/bf01439192
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_746040929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>746040929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-52757025bf4b40a772e3a171fd8156685393234579cb9d31bc7cdcec412d2c373</originalsourceid><addsrcrecordid>eNo9kV9LHDEUxYNUcKu--AlSKLQWRvNnMtk8tuJacUUpFXwb7mRu2CkzkzHJFPwyflajqz4Fzv3lHO65hBxxdsIZ06eNY7yUhhuxQxZcaVEYVelPZMG4UYURy_s98jnGf4wxo41ckKdr30OgG4RELUxgu_RIvaPWjzHBmOh_388Dvkht5_rZBz9g2sCI9PsfKY4pjC2dcEywHX7MuFDH1GWapg3SFLqpx2LyXbZMOEwYIM0hDzyVpaJXNOdPAWPMYnxVFb2-hQOy66CPePj27pO71fnfs9_F-ubi8uznurByKVKhhFaaCdW4sikZaC1QAtfctUuuqmqppJEi52hjG9NK3lhtW4u25KIVVmq5T75sfX1MXR1zC2g3uYMRbaqlrnJzmfm2ZabgH2aMqR66aLHv88J-jrUuK1YyI0wmf2xJG3yMAV09hW6A8FhzVr_cqf61er9Thr--2UK00LsAo-3ixw_Jq4rl9GdoGJC8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746040929</pqid></control><display><type>article</type><title>Molar heat capacity of constant volume of difluoromethane (R32) and pentafluoroethane (R125) from the triple-point temperature to 345 K at pressures to 35 MPa</title><source>SpringerNature Journals</source><creator>LÜDDECKE, T. O ; MAGEE, J. W</creator><creatorcontrib>LÜDDECKE, T. O ; MAGEE, J. W</creatorcontrib><description>Molar heat capacities at constant volume (C sub(v)) of difluoromethane (R32) and pentafluoroethane (R125) were measured with an adiabatic calorimeter. Temperatures ranged from their triple points to 345 K, and pressures up to 35 MPa. Measurements were conducted on the liquid in equilibrium with its vapor and on compressed liquid samples. The samples were of a high purity, verified by chemical analysis of each fluid. For the samples, calorimetric results were obtained for two-phase (C super(() sub(v) super(2))), saturated liquid (C sub( sigma ) or C' sub(x)), and single-phase (C sub(v)) molar heat capacities. The C sub( sigma ) data were used to estimate vapor pressures for values less than 0.3 MPa by applying a thermodynamic relationship between the saturated liquid heat capacity and the temperature derivatives of the vapor pressure. The triple-point temperature (T sub(tr)) and the enthalpy of fusion ( Delta sub(fus)H) were also measured for each substance. The principal sources of uncertainty are the temperature rise measurement and the change-of-volume work adjustment. The expanded uncertainty (at the two-sigma level) for C sub(v) is estimated to be 0.7%, for C super(() sub(v) super(2)) it is 0.5%, and for C sub( sigma ) it is 0.7%.</description><identifier>ISSN: 0195-928X</identifier><identifier>EISSN: 1572-9567</identifier><identifier>DOI: 10.1007/bf01439192</identifier><identifier>CODEN: IJTHDY</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>Applied sciences ; Calorimetry ; Condensed matter: structure, mechanical and thermal properties ; Energy ; Energy. Thermal use of fuels ; Enthalpy ; Ethane ; Exact sciences and technology ; Fluorocarbons ; HIGH PRESSURE ; MATERIALS SCIENCE ; MEDIUM PRESSURE ; Methane ; ORGANIC FLUORINE COMPOUNDS ; Physics ; Pressure effects ; REFRIGERANTS ; Refrigerating engineering ; Refrigerating engineering. Cryogenics. Food conservation ; SPECIFIC HEAT ; Specific heat of liquids ; TEMPERATURE RANGE 0065-0273 K ; TEMPERATURE RANGE 0273-0400 K ; Thermal properties of condensed matter ; Thermal properties of crystalline solids ; Thermodynamic properties ; Vapor pressure</subject><ispartof>International Journal of Thermophysics, 1996-07, Vol.17 (4), p.823-849</ispartof><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-52757025bf4b40a772e3a171fd8156685393234579cb9d31bc7cdcec412d2c373</citedby><cites>FETCH-LOGICAL-c382t-52757025bf4b40a772e3a171fd8156685393234579cb9d31bc7cdcec412d2c373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3166028$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/376928$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>LÜDDECKE, T. O</creatorcontrib><creatorcontrib>MAGEE, J. W</creatorcontrib><title>Molar heat capacity of constant volume of difluoromethane (R32) and pentafluoroethane (R125) from the triple-point temperature to 345 K at pressures to 35 MPa</title><title>International Journal of Thermophysics</title><description>Molar heat capacities at constant volume (C sub(v)) of difluoromethane (R32) and pentafluoroethane (R125) were measured with an adiabatic calorimeter. Temperatures ranged from their triple points to 345 K, and pressures up to 35 MPa. Measurements were conducted on the liquid in equilibrium with its vapor and on compressed liquid samples. The samples were of a high purity, verified by chemical analysis of each fluid. For the samples, calorimetric results were obtained for two-phase (C super(() sub(v) super(2))), saturated liquid (C sub( sigma ) or C' sub(x)), and single-phase (C sub(v)) molar heat capacities. The C sub( sigma ) data were used to estimate vapor pressures for values less than 0.3 MPa by applying a thermodynamic relationship between the saturated liquid heat capacity and the temperature derivatives of the vapor pressure. The triple-point temperature (T sub(tr)) and the enthalpy of fusion ( Delta sub(fus)H) were also measured for each substance. The principal sources of uncertainty are the temperature rise measurement and the change-of-volume work adjustment. The expanded uncertainty (at the two-sigma level) for C sub(v) is estimated to be 0.7%, for C super(() sub(v) super(2)) it is 0.5%, and for C sub( sigma ) it is 0.7%.</description><subject>Applied sciences</subject><subject>Calorimetry</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Enthalpy</subject><subject>Ethane</subject><subject>Exact sciences and technology</subject><subject>Fluorocarbons</subject><subject>HIGH PRESSURE</subject><subject>MATERIALS SCIENCE</subject><subject>MEDIUM PRESSURE</subject><subject>Methane</subject><subject>ORGANIC FLUORINE COMPOUNDS</subject><subject>Physics</subject><subject>Pressure effects</subject><subject>REFRIGERANTS</subject><subject>Refrigerating engineering</subject><subject>Refrigerating engineering. Cryogenics. Food conservation</subject><subject>SPECIFIC HEAT</subject><subject>Specific heat of liquids</subject><subject>TEMPERATURE RANGE 0065-0273 K</subject><subject>TEMPERATURE RANGE 0273-0400 K</subject><subject>Thermal properties of condensed matter</subject><subject>Thermal properties of crystalline solids</subject><subject>Thermodynamic properties</subject><subject>Vapor pressure</subject><issn>0195-928X</issn><issn>1572-9567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNo9kV9LHDEUxYNUcKu--AlSKLQWRvNnMtk8tuJacUUpFXwb7mRu2CkzkzHJFPwyflajqz4Fzv3lHO65hBxxdsIZ06eNY7yUhhuxQxZcaVEYVelPZMG4UYURy_s98jnGf4wxo41ckKdr30OgG4RELUxgu_RIvaPWjzHBmOh_388Dvkht5_rZBz9g2sCI9PsfKY4pjC2dcEywHX7MuFDH1GWapg3SFLqpx2LyXbZMOEwYIM0hDzyVpaJXNOdPAWPMYnxVFb2-hQOy66CPePj27pO71fnfs9_F-ubi8uznurByKVKhhFaaCdW4sikZaC1QAtfctUuuqmqppJEi52hjG9NK3lhtW4u25KIVVmq5T75sfX1MXR1zC2g3uYMRbaqlrnJzmfm2ZabgH2aMqR66aLHv88J-jrUuK1YyI0wmf2xJG3yMAV09hW6A8FhzVr_cqf61er9Thr--2UK00LsAo-3ixw_Jq4rl9GdoGJC8</recordid><startdate>19960701</startdate><enddate>19960701</enddate><creator>LÜDDECKE, T. O</creator><creator>MAGEE, J. W</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope><scope>OTOTI</scope></search><sort><creationdate>19960701</creationdate><title>Molar heat capacity of constant volume of difluoromethane (R32) and pentafluoroethane (R125) from the triple-point temperature to 345 K at pressures to 35 MPa</title><author>LÜDDECKE, T. O ; MAGEE, J. W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-52757025bf4b40a772e3a171fd8156685393234579cb9d31bc7cdcec412d2c373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Applied sciences</topic><topic>Calorimetry</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Enthalpy</topic><topic>Ethane</topic><topic>Exact sciences and technology</topic><topic>Fluorocarbons</topic><topic>HIGH PRESSURE</topic><topic>MATERIALS SCIENCE</topic><topic>MEDIUM PRESSURE</topic><topic>Methane</topic><topic>ORGANIC FLUORINE COMPOUNDS</topic><topic>Physics</topic><topic>Pressure effects</topic><topic>REFRIGERANTS</topic><topic>Refrigerating engineering</topic><topic>Refrigerating engineering. Cryogenics. Food conservation</topic><topic>SPECIFIC HEAT</topic><topic>Specific heat of liquids</topic><topic>TEMPERATURE RANGE 0065-0273 K</topic><topic>TEMPERATURE RANGE 0273-0400 K</topic><topic>Thermal properties of condensed matter</topic><topic>Thermal properties of crystalline solids</topic><topic>Thermodynamic properties</topic><topic>Vapor pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LÜDDECKE, T. O</creatorcontrib><creatorcontrib>MAGEE, J. W</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>International Journal of Thermophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LÜDDECKE, T. O</au><au>MAGEE, J. W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molar heat capacity of constant volume of difluoromethane (R32) and pentafluoroethane (R125) from the triple-point temperature to 345 K at pressures to 35 MPa</atitle><jtitle>International Journal of Thermophysics</jtitle><date>1996-07-01</date><risdate>1996</risdate><volume>17</volume><issue>4</issue><spage>823</spage><epage>849</epage><pages>823-849</pages><issn>0195-928X</issn><eissn>1572-9567</eissn><coden>IJTHDY</coden><abstract>Molar heat capacities at constant volume (C sub(v)) of difluoromethane (R32) and pentafluoroethane (R125) were measured with an adiabatic calorimeter. Temperatures ranged from their triple points to 345 K, and pressures up to 35 MPa. Measurements were conducted on the liquid in equilibrium with its vapor and on compressed liquid samples. The samples were of a high purity, verified by chemical analysis of each fluid. For the samples, calorimetric results were obtained for two-phase (C super(() sub(v) super(2))), saturated liquid (C sub( sigma ) or C' sub(x)), and single-phase (C sub(v)) molar heat capacities. The C sub( sigma ) data were used to estimate vapor pressures for values less than 0.3 MPa by applying a thermodynamic relationship between the saturated liquid heat capacity and the temperature derivatives of the vapor pressure. The triple-point temperature (T sub(tr)) and the enthalpy of fusion ( Delta sub(fus)H) were also measured for each substance. The principal sources of uncertainty are the temperature rise measurement and the change-of-volume work adjustment. The expanded uncertainty (at the two-sigma level) for C sub(v) is estimated to be 0.7%, for C super(() sub(v) super(2)) it is 0.5%, and for C sub( sigma ) it is 0.7%.</abstract><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/bf01439192</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0195-928X
ispartof International Journal of Thermophysics, 1996-07, Vol.17 (4), p.823-849
issn 0195-928X
1572-9567
language eng
recordid cdi_proquest_miscellaneous_746040929
source SpringerNature Journals
subjects Applied sciences
Calorimetry
Condensed matter: structure, mechanical and thermal properties
Energy
Energy. Thermal use of fuels
Enthalpy
Ethane
Exact sciences and technology
Fluorocarbons
HIGH PRESSURE
MATERIALS SCIENCE
MEDIUM PRESSURE
Methane
ORGANIC FLUORINE COMPOUNDS
Physics
Pressure effects
REFRIGERANTS
Refrigerating engineering
Refrigerating engineering. Cryogenics. Food conservation
SPECIFIC HEAT
Specific heat of liquids
TEMPERATURE RANGE 0065-0273 K
TEMPERATURE RANGE 0273-0400 K
Thermal properties of condensed matter
Thermal properties of crystalline solids
Thermodynamic properties
Vapor pressure
title Molar heat capacity of constant volume of difluoromethane (R32) and pentafluoroethane (R125) from the triple-point temperature to 345 K at pressures to 35 MPa
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A52%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molar%20heat%20capacity%20of%20constant%20volume%20of%20difluoromethane%20(R32)%20and%20pentafluoroethane%20(R125)%20from%20the%20triple-point%20temperature%20to%20345%20K%20at%20pressures%20to%2035%20MPa&rft.jtitle=International%20Journal%20of%20Thermophysics&rft.au=L%C3%9CDDECKE,%20T.%20O&rft.date=1996-07-01&rft.volume=17&rft.issue=4&rft.spage=823&rft.epage=849&rft.pages=823-849&rft.issn=0195-928X&rft.eissn=1572-9567&rft.coden=IJTHDY&rft_id=info:doi/10.1007/bf01439192&rft_dat=%3Cproquest_osti_%3E746040929%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=746040929&rft_id=info:pmid/&rfr_iscdi=true