Computer simulation of the hydrodynamics of a two-dimensional gas-fluidized bed

A first principles model of a gas-fluidized bed has been applied to calculate the hydrodynamics of a two-dimensional (2-D) bed with an orifice in the middle of a porous plate distributor. The advanced hydrodynamic model is based on a two fluid model approach in which both phases are considered to be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & chemical engineering 1993, Vol.17 (8), p.839-858
Hauptverfasser: Kuipers, J.A.M., van Duin, K.J., van Beckum, F.P.H., van Swaaij, W.P.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 858
container_issue 8
container_start_page 839
container_title Computers & chemical engineering
container_volume 17
creator Kuipers, J.A.M.
van Duin, K.J.
van Beckum, F.P.H.
van Swaaij, W.P.M.
description A first principles model of a gas-fluidized bed has been applied to calculate the hydrodynamics of a two-dimensional (2-D) bed with an orifice in the middle of a porous plate distributor. The advanced hydrodynamic model is based on a two fluid model approach in which both phases are considered to be continuous and fully interpenetrating. Conservation equations for mass, momentum and thermal energy have been solved numerically by a finite difference technique on a mini-computer. Our computer model calculates the porosity, the pressure, the fluidum phase temperature, the solid phase temperature and the velocity fields of both phases in 2-D Cartesian or axisymmetrical cylindrical coordinates. The new feature of the present model is the incorporation of Newtonian behaviour in the gas and solid phases. Our preliminary calculations indicate that the sensitivity of the computed bubble size with respect to the bed rheology (i.e. the solid phase viscosity) is quite small. However the bubble shape appears to be much more sensitive to the bed rheology. Results of the calculations have been compared with data obtained from an experimental cold-flow model (height: 1000 mm, width: 570 mm, depth: 15 mm).
doi_str_mv 10.1016/0098-1354(93)80067-W
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746037565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>009813549380067W</els_id><sourcerecordid>25954629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459w-46629196b86cb4c30eab79a6ec65de0fd7b6323a9fbe32f575ee4120d76e84e73</originalsourceid><addsrcrecordid>eNp9kEtLw0AQgBdRsFb_gYccxMchusm-shdBii8o9KL0uGx2J3YlydbdxFJ_vaktPQoDA8M3rw-h8wzfZjjjdxjLIs0Io9eS3BQYc5HOD9AoKwRJKRHsEI32yDE6ifETY5zTohih2cQ3y76DkETX9LXunG8TXyXdApLF2gZv161unImbok66lU-ta6CNA6fr5EPHtKp7Z90P2KQEe4qOKl1HONvlMXp_enybvKTT2fPr5GGaGsrkKqWc5zKTvCy4KakhGHQppOZgOLOAKytKTnKiZVUCySsmGADNcmwFh4KCIGN0tZ27DP6rh9ipxkUDda1b8H1UgnI8fM7ZQF7-S-ZMMjpcM4B0C5rgYwxQqWVwjQ5rlWG18aw2EtVGopJE_XlW86HtYjdfR6PrKujWuLjvpUWekyHG6H6LwWDl20FQ0ThoDVgXwHTKevf_nl8CjZG3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25954629</pqid></control><display><type>article</type><title>Computer simulation of the hydrodynamics of a two-dimensional gas-fluidized bed</title><source>Elsevier ScienceDirect Journals</source><creator>Kuipers, J.A.M. ; van Duin, K.J. ; van Beckum, F.P.H. ; van Swaaij, W.P.M.</creator><creatorcontrib>Kuipers, J.A.M. ; van Duin, K.J. ; van Beckum, F.P.H. ; van Swaaij, W.P.M.</creatorcontrib><description>A first principles model of a gas-fluidized bed has been applied to calculate the hydrodynamics of a two-dimensional (2-D) bed with an orifice in the middle of a porous plate distributor. The advanced hydrodynamic model is based on a two fluid model approach in which both phases are considered to be continuous and fully interpenetrating. Conservation equations for mass, momentum and thermal energy have been solved numerically by a finite difference technique on a mini-computer. Our computer model calculates the porosity, the pressure, the fluidum phase temperature, the solid phase temperature and the velocity fields of both phases in 2-D Cartesian or axisymmetrical cylindrical coordinates. The new feature of the present model is the incorporation of Newtonian behaviour in the gas and solid phases. Our preliminary calculations indicate that the sensitivity of the computed bubble size with respect to the bed rheology (i.e. the solid phase viscosity) is quite small. However the bubble shape appears to be much more sensitive to the bed rheology. Results of the calculations have been compared with data obtained from an experimental cold-flow model (height: 1000 mm, width: 570 mm, depth: 15 mm).</description><identifier>ISSN: 0098-1354</identifier><identifier>EISSN: 1873-4375</identifier><identifier>DOI: 10.1016/0098-1354(93)80067-W</identifier><identifier>CODEN: CCENDW</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Chemical engineering ; Computer simulation ; Exact sciences and technology ; Fluidization ; Fluidized beds ; Mathematical models</subject><ispartof>Computers &amp; chemical engineering, 1993, Vol.17 (8), p.839-858</ispartof><rights>1993</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459w-46629196b86cb4c30eab79a6ec65de0fd7b6323a9fbe32f575ee4120d76e84e73</citedby><cites>FETCH-LOGICAL-c459w-46629196b86cb4c30eab79a6ec65de0fd7b6323a9fbe32f575ee4120d76e84e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/009813549380067W$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4822322$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuipers, J.A.M.</creatorcontrib><creatorcontrib>van Duin, K.J.</creatorcontrib><creatorcontrib>van Beckum, F.P.H.</creatorcontrib><creatorcontrib>van Swaaij, W.P.M.</creatorcontrib><title>Computer simulation of the hydrodynamics of a two-dimensional gas-fluidized bed</title><title>Computers &amp; chemical engineering</title><description>A first principles model of a gas-fluidized bed has been applied to calculate the hydrodynamics of a two-dimensional (2-D) bed with an orifice in the middle of a porous plate distributor. The advanced hydrodynamic model is based on a two fluid model approach in which both phases are considered to be continuous and fully interpenetrating. Conservation equations for mass, momentum and thermal energy have been solved numerically by a finite difference technique on a mini-computer. Our computer model calculates the porosity, the pressure, the fluidum phase temperature, the solid phase temperature and the velocity fields of both phases in 2-D Cartesian or axisymmetrical cylindrical coordinates. The new feature of the present model is the incorporation of Newtonian behaviour in the gas and solid phases. Our preliminary calculations indicate that the sensitivity of the computed bubble size with respect to the bed rheology (i.e. the solid phase viscosity) is quite small. However the bubble shape appears to be much more sensitive to the bed rheology. Results of the calculations have been compared with data obtained from an experimental cold-flow model (height: 1000 mm, width: 570 mm, depth: 15 mm).</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Computer simulation</subject><subject>Exact sciences and technology</subject><subject>Fluidization</subject><subject>Fluidized beds</subject><subject>Mathematical models</subject><issn>0098-1354</issn><issn>1873-4375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AQgBdRsFb_gYccxMchusm-shdBii8o9KL0uGx2J3YlydbdxFJ_vaktPQoDA8M3rw-h8wzfZjjjdxjLIs0Io9eS3BQYc5HOD9AoKwRJKRHsEI32yDE6ifETY5zTohih2cQ3y76DkETX9LXunG8TXyXdApLF2gZv161unImbok66lU-ta6CNA6fr5EPHtKp7Z90P2KQEe4qOKl1HONvlMXp_enybvKTT2fPr5GGaGsrkKqWc5zKTvCy4KakhGHQppOZgOLOAKytKTnKiZVUCySsmGADNcmwFh4KCIGN0tZ27DP6rh9ipxkUDda1b8H1UgnI8fM7ZQF7-S-ZMMjpcM4B0C5rgYwxQqWVwjQ5rlWG18aw2EtVGopJE_XlW86HtYjdfR6PrKujWuLjvpUWekyHG6H6LwWDl20FQ0ThoDVgXwHTKevf_nl8CjZG3</recordid><startdate>1993</startdate><enddate>1993</enddate><creator>Kuipers, J.A.M.</creator><creator>van Duin, K.J.</creator><creator>van Beckum, F.P.H.</creator><creator>van Swaaij, W.P.M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TC</scope></search><sort><creationdate>1993</creationdate><title>Computer simulation of the hydrodynamics of a two-dimensional gas-fluidized bed</title><author>Kuipers, J.A.M. ; van Duin, K.J. ; van Beckum, F.P.H. ; van Swaaij, W.P.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459w-46629196b86cb4c30eab79a6ec65de0fd7b6323a9fbe32f575ee4120d76e84e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Computer simulation</topic><topic>Exact sciences and technology</topic><topic>Fluidization</topic><topic>Fluidized beds</topic><topic>Mathematical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuipers, J.A.M.</creatorcontrib><creatorcontrib>van Duin, K.J.</creatorcontrib><creatorcontrib>van Beckum, F.P.H.</creatorcontrib><creatorcontrib>van Swaaij, W.P.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Computers &amp; chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuipers, J.A.M.</au><au>van Duin, K.J.</au><au>van Beckum, F.P.H.</au><au>van Swaaij, W.P.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer simulation of the hydrodynamics of a two-dimensional gas-fluidized bed</atitle><jtitle>Computers &amp; chemical engineering</jtitle><date>1993</date><risdate>1993</risdate><volume>17</volume><issue>8</issue><spage>839</spage><epage>858</epage><pages>839-858</pages><issn>0098-1354</issn><eissn>1873-4375</eissn><coden>CCENDW</coden><abstract>A first principles model of a gas-fluidized bed has been applied to calculate the hydrodynamics of a two-dimensional (2-D) bed with an orifice in the middle of a porous plate distributor. The advanced hydrodynamic model is based on a two fluid model approach in which both phases are considered to be continuous and fully interpenetrating. Conservation equations for mass, momentum and thermal energy have been solved numerically by a finite difference technique on a mini-computer. Our computer model calculates the porosity, the pressure, the fluidum phase temperature, the solid phase temperature and the velocity fields of both phases in 2-D Cartesian or axisymmetrical cylindrical coordinates. The new feature of the present model is the incorporation of Newtonian behaviour in the gas and solid phases. Our preliminary calculations indicate that the sensitivity of the computed bubble size with respect to the bed rheology (i.e. the solid phase viscosity) is quite small. However the bubble shape appears to be much more sensitive to the bed rheology. Results of the calculations have been compared with data obtained from an experimental cold-flow model (height: 1000 mm, width: 570 mm, depth: 15 mm).</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0098-1354(93)80067-W</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0098-1354
ispartof Computers & chemical engineering, 1993, Vol.17 (8), p.839-858
issn 0098-1354
1873-4375
language eng
recordid cdi_proquest_miscellaneous_746037565
source Elsevier ScienceDirect Journals
subjects Applied sciences
Chemical engineering
Computer simulation
Exact sciences and technology
Fluidization
Fluidized beds
Mathematical models
title Computer simulation of the hydrodynamics of a two-dimensional gas-fluidized bed
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T14%3A30%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20simulation%20of%20the%20hydrodynamics%20of%20a%20two-dimensional%20gas-fluidized%20bed&rft.jtitle=Computers%20&%20chemical%20engineering&rft.au=Kuipers,%20J.A.M.&rft.date=1993&rft.volume=17&rft.issue=8&rft.spage=839&rft.epage=858&rft.pages=839-858&rft.issn=0098-1354&rft.eissn=1873-4375&rft.coden=CCENDW&rft_id=info:doi/10.1016/0098-1354(93)80067-W&rft_dat=%3Cproquest_cross%3E25954629%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25954629&rft_id=info:pmid/&rft_els_id=009813549380067W&rfr_iscdi=true