Thin film silicon solar cells on upgraded metallurgical silicon substrates prepared by liquid phase epitaxy
Thin layers of about 30 μm thickness were grown on upgraded metallurgical (UMG) silicon substrates by liquid phase epitaxy (LPE) from an indium solvent. Instead of adding electronic grade silicon to the solution, a melt back step was carried out before each growth process to supply silicon to the me...
Gespeichert in:
Veröffentlicht in: | Solar energy materials and solar cells 2002-10, Vol.74 (1), p.219-223 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 223 |
---|---|
container_issue | 1 |
container_start_page | 219 |
container_title | Solar energy materials and solar cells |
container_volume | 74 |
creator | Peter, K Kopecek, R Fath, P Bucher, E Zahedi, C |
description | Thin layers of about 30
μm thickness were grown on upgraded metallurgical (UMG) silicon substrates by liquid phase epitaxy (LPE) from an indium solvent. Instead of adding electronic grade silicon to the solution, a melt back step was carried out before each growth process to supply silicon to the melt from the UMG-Si wafers. We present an LPE technology which is capable to be directly scaled up to a few hundred layers per run. Solar cells have been fabricated based on phosphorous paste diffusion with efficiencies up to
η=10.0%. |
doi_str_mv | 10.1016/S0927-0248(02)00074-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746017953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024802000740</els_id><sourcerecordid>27759262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-400e004a8c7af82055410e797ce121040efeb7e4e822f21fd443379fec96334d3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EEkvpR0DyhUIPgfGfxMmpqipoK1XiQHu2vM64NXiT1JNU7LfH263aG1xmNNJvZvTeY-yDgC8CRPP1J3TSVCB1-xnkMQAYXcErthKt6SqluvY1Wz0jb9k7ol8Fko3SK_b7-i4OPMS04RRT9OPAaUwuc48pES_jMt1m12PPNzi7lJZ8G71LL_Sypjm7GYlPGSeXC7ne8hTvl9jz6c4Rcpzi7P5s37M3wSXCw6d-wG6-f7s-u6iufpxfnp1eVV4DzFUpCKBd640LrYS61gLQdMajkAI0YMC1QY2tlEGK0GutlOkC-q5RSvfqgH3a353yeL8gzXYTaafHDTguZI1uQJiuVoU8-icpjak72cgC1nvQ55EoY7BTjhuXt1aA3YVgH0OwO4dLsY8hWCh7H58eOCquhewGH-lluWgFJerCnew5LL48RMyWfMTBYx8z-tn2Y_zPp7_xoJww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27759262</pqid></control><display><type>article</type><title>Thin film silicon solar cells on upgraded metallurgical silicon substrates prepared by liquid phase epitaxy</title><source>Access via ScienceDirect (Elsevier)</source><creator>Peter, K ; Kopecek, R ; Fath, P ; Bucher, E ; Zahedi, C</creator><creatorcontrib>Peter, K ; Kopecek, R ; Fath, P ; Bucher, E ; Zahedi, C</creatorcontrib><description>Thin layers of about 30
μm thickness were grown on upgraded metallurgical (UMG) silicon substrates by liquid phase epitaxy (LPE) from an indium solvent. Instead of adding electronic grade silicon to the solution, a melt back step was carried out before each growth process to supply silicon to the melt from the UMG-Si wafers. We present an LPE technology which is capable to be directly scaled up to a few hundred layers per run. Solar cells have been fabricated based on phosphorous paste diffusion with efficiencies up to
η=10.0%.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/S0927-0248(02)00074-0</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Energy ; Exact sciences and technology ; Feedstock ; Feedstocks ; Liquid phase epitaxy ; LPE ; Metallurgy ; Natural energy ; Photovoltaic conversion ; Semiconducting indium ; Silicon ; Silicon wafers ; Solar cells. Photoelectrochemical cells ; Solar energy ; Solvents ; Thin film ; Thin films ; Upgraded metallurgical</subject><ispartof>Solar energy materials and solar cells, 2002-10, Vol.74 (1), p.219-223</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-400e004a8c7af82055410e797ce121040efeb7e4e822f21fd443379fec96334d3</citedby><cites>FETCH-LOGICAL-c400t-400e004a8c7af82055410e797ce121040efeb7e4e822f21fd443379fec96334d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0927-0248(02)00074-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,3551,23935,23936,25145,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14000315$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Peter, K</creatorcontrib><creatorcontrib>Kopecek, R</creatorcontrib><creatorcontrib>Fath, P</creatorcontrib><creatorcontrib>Bucher, E</creatorcontrib><creatorcontrib>Zahedi, C</creatorcontrib><title>Thin film silicon solar cells on upgraded metallurgical silicon substrates prepared by liquid phase epitaxy</title><title>Solar energy materials and solar cells</title><description>Thin layers of about 30
μm thickness were grown on upgraded metallurgical (UMG) silicon substrates by liquid phase epitaxy (LPE) from an indium solvent. Instead of adding electronic grade silicon to the solution, a melt back step was carried out before each growth process to supply silicon to the melt from the UMG-Si wafers. We present an LPE technology which is capable to be directly scaled up to a few hundred layers per run. Solar cells have been fabricated based on phosphorous paste diffusion with efficiencies up to
η=10.0%.</description><subject>Applied sciences</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Feedstock</subject><subject>Feedstocks</subject><subject>Liquid phase epitaxy</subject><subject>LPE</subject><subject>Metallurgy</subject><subject>Natural energy</subject><subject>Photovoltaic conversion</subject><subject>Semiconducting indium</subject><subject>Silicon</subject><subject>Silicon wafers</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Solvents</subject><subject>Thin film</subject><subject>Thin films</subject><subject>Upgraded metallurgical</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v1DAQxS0EEkvpR0DyhUIPgfGfxMmpqipoK1XiQHu2vM64NXiT1JNU7LfH263aG1xmNNJvZvTeY-yDgC8CRPP1J3TSVCB1-xnkMQAYXcErthKt6SqluvY1Wz0jb9k7ol8Fko3SK_b7-i4OPMS04RRT9OPAaUwuc48pES_jMt1m12PPNzi7lJZ8G71LL_Sypjm7GYlPGSeXC7ne8hTvl9jz6c4Rcpzi7P5s37M3wSXCw6d-wG6-f7s-u6iufpxfnp1eVV4DzFUpCKBd640LrYS61gLQdMajkAI0YMC1QY2tlEGK0GutlOkC-q5RSvfqgH3a353yeL8gzXYTaafHDTguZI1uQJiuVoU8-icpjak72cgC1nvQ55EoY7BTjhuXt1aA3YVgH0OwO4dLsY8hWCh7H58eOCquhewGH-lluWgFJerCnew5LL48RMyWfMTBYx8z-tn2Y_zPp7_xoJww</recordid><startdate>20021001</startdate><enddate>20021001</enddate><creator>Peter, K</creator><creator>Kopecek, R</creator><creator>Fath, P</creator><creator>Bucher, E</creator><creator>Zahedi, C</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7TC</scope></search><sort><creationdate>20021001</creationdate><title>Thin film silicon solar cells on upgraded metallurgical silicon substrates prepared by liquid phase epitaxy</title><author>Peter, K ; Kopecek, R ; Fath, P ; Bucher, E ; Zahedi, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-400e004a8c7af82055410e797ce121040efeb7e4e822f21fd443379fec96334d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Feedstock</topic><topic>Feedstocks</topic><topic>Liquid phase epitaxy</topic><topic>LPE</topic><topic>Metallurgy</topic><topic>Natural energy</topic><topic>Photovoltaic conversion</topic><topic>Semiconducting indium</topic><topic>Silicon</topic><topic>Silicon wafers</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Solvents</topic><topic>Thin film</topic><topic>Thin films</topic><topic>Upgraded metallurgical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peter, K</creatorcontrib><creatorcontrib>Kopecek, R</creatorcontrib><creatorcontrib>Fath, P</creatorcontrib><creatorcontrib>Bucher, E</creatorcontrib><creatorcontrib>Zahedi, C</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peter, K</au><au>Kopecek, R</au><au>Fath, P</au><au>Bucher, E</au><au>Zahedi, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thin film silicon solar cells on upgraded metallurgical silicon substrates prepared by liquid phase epitaxy</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2002-10-01</date><risdate>2002</risdate><volume>74</volume><issue>1</issue><spage>219</spage><epage>223</epage><pages>219-223</pages><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>Thin layers of about 30
μm thickness were grown on upgraded metallurgical (UMG) silicon substrates by liquid phase epitaxy (LPE) from an indium solvent. Instead of adding electronic grade silicon to the solution, a melt back step was carried out before each growth process to supply silicon to the melt from the UMG-Si wafers. We present an LPE technology which is capable to be directly scaled up to a few hundred layers per run. Solar cells have been fabricated based on phosphorous paste diffusion with efficiencies up to
η=10.0%.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0927-0248(02)00074-0</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0248 |
ispartof | Solar energy materials and solar cells, 2002-10, Vol.74 (1), p.219-223 |
issn | 0927-0248 1879-3398 |
language | eng |
recordid | cdi_proquest_miscellaneous_746017953 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Energy Exact sciences and technology Feedstock Feedstocks Liquid phase epitaxy LPE Metallurgy Natural energy Photovoltaic conversion Semiconducting indium Silicon Silicon wafers Solar cells. Photoelectrochemical cells Solar energy Solvents Thin film Thin films Upgraded metallurgical |
title | Thin film silicon solar cells on upgraded metallurgical silicon substrates prepared by liquid phase epitaxy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T15%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thin%20film%20silicon%20solar%20cells%20on%20upgraded%20metallurgical%20silicon%20substrates%20prepared%20by%20liquid%20phase%20epitaxy&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Peter,%20K&rft.date=2002-10-01&rft.volume=74&rft.issue=1&rft.spage=219&rft.epage=223&rft.pages=219-223&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/S0927-0248(02)00074-0&rft_dat=%3Cproquest_cross%3E27759262%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27759262&rft_id=info:pmid/&rft_els_id=S0927024802000740&rfr_iscdi=true |