Thin film silicon solar cells on upgraded metallurgical silicon substrates prepared by liquid phase epitaxy

Thin layers of about 30 μm thickness were grown on upgraded metallurgical (UMG) silicon substrates by liquid phase epitaxy (LPE) from an indium solvent. Instead of adding electronic grade silicon to the solution, a melt back step was carried out before each growth process to supply silicon to the me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy materials and solar cells 2002-10, Vol.74 (1), p.219-223
Hauptverfasser: Peter, K, Kopecek, R, Fath, P, Bucher, E, Zahedi, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 223
container_issue 1
container_start_page 219
container_title Solar energy materials and solar cells
container_volume 74
creator Peter, K
Kopecek, R
Fath, P
Bucher, E
Zahedi, C
description Thin layers of about 30 μm thickness were grown on upgraded metallurgical (UMG) silicon substrates by liquid phase epitaxy (LPE) from an indium solvent. Instead of adding electronic grade silicon to the solution, a melt back step was carried out before each growth process to supply silicon to the melt from the UMG-Si wafers. We present an LPE technology which is capable to be directly scaled up to a few hundred layers per run. Solar cells have been fabricated based on phosphorous paste diffusion with efficiencies up to η=10.0%.
doi_str_mv 10.1016/S0927-0248(02)00074-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746017953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024802000740</els_id><sourcerecordid>27759262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-400e004a8c7af82055410e797ce121040efeb7e4e822f21fd443379fec96334d3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EEkvpR0DyhUIPgfGfxMmpqipoK1XiQHu2vM64NXiT1JNU7LfH263aG1xmNNJvZvTeY-yDgC8CRPP1J3TSVCB1-xnkMQAYXcErthKt6SqluvY1Wz0jb9k7ol8Fko3SK_b7-i4OPMS04RRT9OPAaUwuc48pES_jMt1m12PPNzi7lJZ8G71LL_Sypjm7GYlPGSeXC7ne8hTvl9jz6c4Rcpzi7P5s37M3wSXCw6d-wG6-f7s-u6iufpxfnp1eVV4DzFUpCKBd640LrYS61gLQdMajkAI0YMC1QY2tlEGK0GutlOkC-q5RSvfqgH3a353yeL8gzXYTaafHDTguZI1uQJiuVoU8-icpjak72cgC1nvQ55EoY7BTjhuXt1aA3YVgH0OwO4dLsY8hWCh7H58eOCquhewGH-lluWgFJerCnew5LL48RMyWfMTBYx8z-tn2Y_zPp7_xoJww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27759262</pqid></control><display><type>article</type><title>Thin film silicon solar cells on upgraded metallurgical silicon substrates prepared by liquid phase epitaxy</title><source>Access via ScienceDirect (Elsevier)</source><creator>Peter, K ; Kopecek, R ; Fath, P ; Bucher, E ; Zahedi, C</creator><creatorcontrib>Peter, K ; Kopecek, R ; Fath, P ; Bucher, E ; Zahedi, C</creatorcontrib><description>Thin layers of about 30 μm thickness were grown on upgraded metallurgical (UMG) silicon substrates by liquid phase epitaxy (LPE) from an indium solvent. Instead of adding electronic grade silicon to the solution, a melt back step was carried out before each growth process to supply silicon to the melt from the UMG-Si wafers. We present an LPE technology which is capable to be directly scaled up to a few hundred layers per run. Solar cells have been fabricated based on phosphorous paste diffusion with efficiencies up to η=10.0%.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/S0927-0248(02)00074-0</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Energy ; Exact sciences and technology ; Feedstock ; Feedstocks ; Liquid phase epitaxy ; LPE ; Metallurgy ; Natural energy ; Photovoltaic conversion ; Semiconducting indium ; Silicon ; Silicon wafers ; Solar cells. Photoelectrochemical cells ; Solar energy ; Solvents ; Thin film ; Thin films ; Upgraded metallurgical</subject><ispartof>Solar energy materials and solar cells, 2002-10, Vol.74 (1), p.219-223</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-400e004a8c7af82055410e797ce121040efeb7e4e822f21fd443379fec96334d3</citedby><cites>FETCH-LOGICAL-c400t-400e004a8c7af82055410e797ce121040efeb7e4e822f21fd443379fec96334d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0927-0248(02)00074-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,3551,23935,23936,25145,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14000315$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Peter, K</creatorcontrib><creatorcontrib>Kopecek, R</creatorcontrib><creatorcontrib>Fath, P</creatorcontrib><creatorcontrib>Bucher, E</creatorcontrib><creatorcontrib>Zahedi, C</creatorcontrib><title>Thin film silicon solar cells on upgraded metallurgical silicon substrates prepared by liquid phase epitaxy</title><title>Solar energy materials and solar cells</title><description>Thin layers of about 30 μm thickness were grown on upgraded metallurgical (UMG) silicon substrates by liquid phase epitaxy (LPE) from an indium solvent. Instead of adding electronic grade silicon to the solution, a melt back step was carried out before each growth process to supply silicon to the melt from the UMG-Si wafers. We present an LPE technology which is capable to be directly scaled up to a few hundred layers per run. Solar cells have been fabricated based on phosphorous paste diffusion with efficiencies up to η=10.0%.</description><subject>Applied sciences</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Feedstock</subject><subject>Feedstocks</subject><subject>Liquid phase epitaxy</subject><subject>LPE</subject><subject>Metallurgy</subject><subject>Natural energy</subject><subject>Photovoltaic conversion</subject><subject>Semiconducting indium</subject><subject>Silicon</subject><subject>Silicon wafers</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Solvents</subject><subject>Thin film</subject><subject>Thin films</subject><subject>Upgraded metallurgical</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v1DAQxS0EEkvpR0DyhUIPgfGfxMmpqipoK1XiQHu2vM64NXiT1JNU7LfH263aG1xmNNJvZvTeY-yDgC8CRPP1J3TSVCB1-xnkMQAYXcErthKt6SqluvY1Wz0jb9k7ol8Fko3SK_b7-i4OPMS04RRT9OPAaUwuc48pES_jMt1m12PPNzi7lJZ8G71LL_Sypjm7GYlPGSeXC7ne8hTvl9jz6c4Rcpzi7P5s37M3wSXCw6d-wG6-f7s-u6iufpxfnp1eVV4DzFUpCKBd640LrYS61gLQdMajkAI0YMC1QY2tlEGK0GutlOkC-q5RSvfqgH3a353yeL8gzXYTaafHDTguZI1uQJiuVoU8-icpjak72cgC1nvQ55EoY7BTjhuXt1aA3YVgH0OwO4dLsY8hWCh7H58eOCquhewGH-lluWgFJerCnew5LL48RMyWfMTBYx8z-tn2Y_zPp7_xoJww</recordid><startdate>20021001</startdate><enddate>20021001</enddate><creator>Peter, K</creator><creator>Kopecek, R</creator><creator>Fath, P</creator><creator>Bucher, E</creator><creator>Zahedi, C</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7TC</scope></search><sort><creationdate>20021001</creationdate><title>Thin film silicon solar cells on upgraded metallurgical silicon substrates prepared by liquid phase epitaxy</title><author>Peter, K ; Kopecek, R ; Fath, P ; Bucher, E ; Zahedi, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-400e004a8c7af82055410e797ce121040efeb7e4e822f21fd443379fec96334d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Feedstock</topic><topic>Feedstocks</topic><topic>Liquid phase epitaxy</topic><topic>LPE</topic><topic>Metallurgy</topic><topic>Natural energy</topic><topic>Photovoltaic conversion</topic><topic>Semiconducting indium</topic><topic>Silicon</topic><topic>Silicon wafers</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Solvents</topic><topic>Thin film</topic><topic>Thin films</topic><topic>Upgraded metallurgical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peter, K</creatorcontrib><creatorcontrib>Kopecek, R</creatorcontrib><creatorcontrib>Fath, P</creatorcontrib><creatorcontrib>Bucher, E</creatorcontrib><creatorcontrib>Zahedi, C</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peter, K</au><au>Kopecek, R</au><au>Fath, P</au><au>Bucher, E</au><au>Zahedi, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thin film silicon solar cells on upgraded metallurgical silicon substrates prepared by liquid phase epitaxy</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2002-10-01</date><risdate>2002</risdate><volume>74</volume><issue>1</issue><spage>219</spage><epage>223</epage><pages>219-223</pages><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>Thin layers of about 30 μm thickness were grown on upgraded metallurgical (UMG) silicon substrates by liquid phase epitaxy (LPE) from an indium solvent. Instead of adding electronic grade silicon to the solution, a melt back step was carried out before each growth process to supply silicon to the melt from the UMG-Si wafers. We present an LPE technology which is capable to be directly scaled up to a few hundred layers per run. Solar cells have been fabricated based on phosphorous paste diffusion with efficiencies up to η=10.0%.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0927-0248(02)00074-0</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2002-10, Vol.74 (1), p.219-223
issn 0927-0248
1879-3398
language eng
recordid cdi_proquest_miscellaneous_746017953
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Energy
Exact sciences and technology
Feedstock
Feedstocks
Liquid phase epitaxy
LPE
Metallurgy
Natural energy
Photovoltaic conversion
Semiconducting indium
Silicon
Silicon wafers
Solar cells. Photoelectrochemical cells
Solar energy
Solvents
Thin film
Thin films
Upgraded metallurgical
title Thin film silicon solar cells on upgraded metallurgical silicon substrates prepared by liquid phase epitaxy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T15%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thin%20film%20silicon%20solar%20cells%20on%20upgraded%20metallurgical%20silicon%20substrates%20prepared%20by%20liquid%20phase%20epitaxy&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Peter,%20K&rft.date=2002-10-01&rft.volume=74&rft.issue=1&rft.spage=219&rft.epage=223&rft.pages=219-223&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/S0927-0248(02)00074-0&rft_dat=%3Cproquest_cross%3E27759262%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27759262&rft_id=info:pmid/&rft_els_id=S0927024802000740&rfr_iscdi=true