Atomistic feature scale modeling of the titanium ionized physical vapor deposition process
We develop a fundamental model to simulate the ionized physical vapor deposition process of a titanium barrier into submicron features. Using molecular dynamics techniques we calculate for typical energies the energy and angular dependent reaction rates of Ti + with Ti and Ar + with Ti including the...
Gespeichert in:
Veröffentlicht in: | Journal of vacuum science & technology. A, Vacuum, surfaces, and films Vacuum, surfaces, and films, 2002-07, Vol.20 (4), p.1284-1294 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1294 |
---|---|
container_issue | 4 |
container_start_page | 1284 |
container_title | Journal of vacuum science & technology. A, Vacuum, surfaces, and films |
container_volume | 20 |
creator | Kersch, A. Hansen, U. |
description | We develop a fundamental model to simulate the ionized physical vapor deposition process of a titanium barrier into submicron features. Using molecular dynamics techniques we calculate for typical energies the energy and angular dependent reaction rates of
Ti
+
with Ti and
Ar
+
with Ti including the distribution of the etched away particles. The interaction potential is based on Ackland’s model [G. J. Ackland, Philos. Mag. A 66, 917 (1992)] and is extended for particles with a kinetic energy up to 150 eV. The reaction rates are implemented into a cellular automaton feature scale simulator modeling the thin film growth. The reactor and plasma sheath conditions are described in a simple model providing the energy and angular distribution for the feature scale simulator. The multiscale model is applied to barrier deposition into a high aspect ratio feature with different substrate bias conditions. The results show that the barrier growth at high energy is dominated by kinetic energy driven processes. |
doi_str_mv | 10.1116/1.1481041 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_miscellaneous_746017933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>746017933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-e4843369c8f4603560c9d8371c792782e8150c8fe7f835a49b4d547f09753faf3</originalsourceid><addsrcrecordid>eNqdkE1LAzEURYMoWKsL_0F2ojCaTJJJsizFLyi40Y2bEDOJjcxMxiRTqL_elBbcu3qLe7iPcwG4xOgWY9zc4VtMBUYUH4EZZjWqBGPyGMwQJ7SqMcKn4CylL4RQXaNmBt4XOfQ-ZW-gszpP0cJkdGdhH1rb-eETBgfz2sLssx781EMfBv9jWziut8kXFG70GCJs7RiSzyWFYwzGpnQOTpzukr043Dl4e7h_XT5Vq5fH5-ViVRlSy1xZKighjTTC0QYR1iAjW0E4NlzWXNRWYIZKaLkThGkqP2jLKHdIckacdmQOrva95e_3ZFNWRcjYrtODDVNSvNRiLgkp5PWeNDGkFK1TY_S9jluFkdrNp7A6zFfYmz2bTDHfef0P3oT4B6qxdeQXTnN-Lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746017933</pqid></control><display><type>article</type><title>Atomistic feature scale modeling of the titanium ionized physical vapor deposition process</title><source>American Institute of Physics (AIP) Journals</source><creator>Kersch, A. ; Hansen, U.</creator><creatorcontrib>Kersch, A. ; Hansen, U.</creatorcontrib><description>We develop a fundamental model to simulate the ionized physical vapor deposition process of a titanium barrier into submicron features. Using molecular dynamics techniques we calculate for typical energies the energy and angular dependent reaction rates of
Ti
+
with Ti and
Ar
+
with Ti including the distribution of the etched away particles. The interaction potential is based on Ackland’s model [G. J. Ackland, Philos. Mag. A 66, 917 (1992)] and is extended for particles with a kinetic energy up to 150 eV. The reaction rates are implemented into a cellular automaton feature scale simulator modeling the thin film growth. The reactor and plasma sheath conditions are described in a simple model providing the energy and angular distribution for the feature scale simulator. The multiscale model is applied to barrier deposition into a high aspect ratio feature with different substrate bias conditions. The results show that the barrier growth at high energy is dominated by kinetic energy driven processes.</description><identifier>ISSN: 0734-2101</identifier><identifier>EISSN: 1520-8559</identifier><identifier>DOI: 10.1116/1.1481041</identifier><identifier>CODEN: JVTAD6</identifier><language>eng</language><subject>Aspect ratio ; Atomic physics ; Computer simulation ; Film growth ; Ionization ; Kinetic energy ; Mathematical models ; Molecular dynamics ; Physical vapor deposition ; Rate constants</subject><ispartof>Journal of vacuum science & technology. A, Vacuum, surfaces, and films, 2002-07, Vol.20 (4), p.1284-1294</ispartof><rights>American Vacuum Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-e4843369c8f4603560c9d8371c792782e8150c8fe7f835a49b4d547f09753faf3</citedby><cites>FETCH-LOGICAL-c329t-e4843369c8f4603560c9d8371c792782e8150c8fe7f835a49b4d547f09753faf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Kersch, A.</creatorcontrib><creatorcontrib>Hansen, U.</creatorcontrib><title>Atomistic feature scale modeling of the titanium ionized physical vapor deposition process</title><title>Journal of vacuum science & technology. A, Vacuum, surfaces, and films</title><description>We develop a fundamental model to simulate the ionized physical vapor deposition process of a titanium barrier into submicron features. Using molecular dynamics techniques we calculate for typical energies the energy and angular dependent reaction rates of
Ti
+
with Ti and
Ar
+
with Ti including the distribution of the etched away particles. The interaction potential is based on Ackland’s model [G. J. Ackland, Philos. Mag. A 66, 917 (1992)] and is extended for particles with a kinetic energy up to 150 eV. The reaction rates are implemented into a cellular automaton feature scale simulator modeling the thin film growth. The reactor and plasma sheath conditions are described in a simple model providing the energy and angular distribution for the feature scale simulator. The multiscale model is applied to barrier deposition into a high aspect ratio feature with different substrate bias conditions. The results show that the barrier growth at high energy is dominated by kinetic energy driven processes.</description><subject>Aspect ratio</subject><subject>Atomic physics</subject><subject>Computer simulation</subject><subject>Film growth</subject><subject>Ionization</subject><subject>Kinetic energy</subject><subject>Mathematical models</subject><subject>Molecular dynamics</subject><subject>Physical vapor deposition</subject><subject>Rate constants</subject><issn>0734-2101</issn><issn>1520-8559</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LAzEURYMoWKsL_0F2ojCaTJJJsizFLyi40Y2bEDOJjcxMxiRTqL_elBbcu3qLe7iPcwG4xOgWY9zc4VtMBUYUH4EZZjWqBGPyGMwQJ7SqMcKn4CylL4RQXaNmBt4XOfQ-ZW-gszpP0cJkdGdhH1rb-eETBgfz2sLssx781EMfBv9jWziut8kXFG70GCJs7RiSzyWFYwzGpnQOTpzukr043Dl4e7h_XT5Vq5fH5-ViVRlSy1xZKighjTTC0QYR1iAjW0E4NlzWXNRWYIZKaLkThGkqP2jLKHdIckacdmQOrva95e_3ZFNWRcjYrtODDVNSvNRiLgkp5PWeNDGkFK1TY_S9jluFkdrNp7A6zFfYmz2bTDHfef0P3oT4B6qxdeQXTnN-Lg</recordid><startdate>20020701</startdate><enddate>20020701</enddate><creator>Kersch, A.</creator><creator>Hansen, U.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>20020701</creationdate><title>Atomistic feature scale modeling of the titanium ionized physical vapor deposition process</title><author>Kersch, A. ; Hansen, U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-e4843369c8f4603560c9d8371c792782e8150c8fe7f835a49b4d547f09753faf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Aspect ratio</topic><topic>Atomic physics</topic><topic>Computer simulation</topic><topic>Film growth</topic><topic>Ionization</topic><topic>Kinetic energy</topic><topic>Mathematical models</topic><topic>Molecular dynamics</topic><topic>Physical vapor deposition</topic><topic>Rate constants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kersch, A.</creatorcontrib><creatorcontrib>Hansen, U.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Journal of vacuum science & technology. A, Vacuum, surfaces, and films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kersch, A.</au><au>Hansen, U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomistic feature scale modeling of the titanium ionized physical vapor deposition process</atitle><jtitle>Journal of vacuum science & technology. A, Vacuum, surfaces, and films</jtitle><date>2002-07-01</date><risdate>2002</risdate><volume>20</volume><issue>4</issue><spage>1284</spage><epage>1294</epage><pages>1284-1294</pages><issn>0734-2101</issn><eissn>1520-8559</eissn><coden>JVTAD6</coden><abstract>We develop a fundamental model to simulate the ionized physical vapor deposition process of a titanium barrier into submicron features. Using molecular dynamics techniques we calculate for typical energies the energy and angular dependent reaction rates of
Ti
+
with Ti and
Ar
+
with Ti including the distribution of the etched away particles. The interaction potential is based on Ackland’s model [G. J. Ackland, Philos. Mag. A 66, 917 (1992)] and is extended for particles with a kinetic energy up to 150 eV. The reaction rates are implemented into a cellular automaton feature scale simulator modeling the thin film growth. The reactor and plasma sheath conditions are described in a simple model providing the energy and angular distribution for the feature scale simulator. The multiscale model is applied to barrier deposition into a high aspect ratio feature with different substrate bias conditions. The results show that the barrier growth at high energy is dominated by kinetic energy driven processes.</abstract><doi>10.1116/1.1481041</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0734-2101 |
ispartof | Journal of vacuum science & technology. A, Vacuum, surfaces, and films, 2002-07, Vol.20 (4), p.1284-1294 |
issn | 0734-2101 1520-8559 |
language | eng |
recordid | cdi_proquest_miscellaneous_746017933 |
source | American Institute of Physics (AIP) Journals |
subjects | Aspect ratio Atomic physics Computer simulation Film growth Ionization Kinetic energy Mathematical models Molecular dynamics Physical vapor deposition Rate constants |
title | Atomistic feature scale modeling of the titanium ionized physical vapor deposition process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomistic%20feature%20scale%20modeling%20of%20the%20titanium%20ionized%20physical%20vapor%20deposition%20process&rft.jtitle=Journal%20of%20vacuum%20science%20&%20technology.%20A,%20Vacuum,%20surfaces,%20and%20films&rft.au=Kersch,%20A.&rft.date=2002-07-01&rft.volume=20&rft.issue=4&rft.spage=1284&rft.epage=1294&rft.pages=1284-1294&rft.issn=0734-2101&rft.eissn=1520-8559&rft.coden=JVTAD6&rft_id=info:doi/10.1116/1.1481041&rft_dat=%3Cproquest_scita%3E746017933%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=746017933&rft_id=info:pmid/&rfr_iscdi=true |