Atomistic feature scale modeling of the titanium ionized physical vapor deposition process

We develop a fundamental model to simulate the ionized physical vapor deposition process of a titanium barrier into submicron features. Using molecular dynamics techniques we calculate for typical energies the energy and angular dependent reaction rates of Ti + with Ti and Ar + with Ti including the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vacuum science & technology. A, Vacuum, surfaces, and films Vacuum, surfaces, and films, 2002-07, Vol.20 (4), p.1284-1294
Hauptverfasser: Kersch, A., Hansen, U.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1294
container_issue 4
container_start_page 1284
container_title Journal of vacuum science & technology. A, Vacuum, surfaces, and films
container_volume 20
creator Kersch, A.
Hansen, U.
description We develop a fundamental model to simulate the ionized physical vapor deposition process of a titanium barrier into submicron features. Using molecular dynamics techniques we calculate for typical energies the energy and angular dependent reaction rates of Ti + with Ti and Ar + with Ti including the distribution of the etched away particles. The interaction potential is based on Ackland’s model [G. J. Ackland, Philos. Mag. A 66, 917 (1992)] and is extended for particles with a kinetic energy up to 150 eV. The reaction rates are implemented into a cellular automaton feature scale simulator modeling the thin film growth. The reactor and plasma sheath conditions are described in a simple model providing the energy and angular distribution for the feature scale simulator. The multiscale model is applied to barrier deposition into a high aspect ratio feature with different substrate bias conditions. The results show that the barrier growth at high energy is dominated by kinetic energy driven processes.
doi_str_mv 10.1116/1.1481041
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_miscellaneous_746017933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>746017933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-e4843369c8f4603560c9d8371c792782e8150c8fe7f835a49b4d547f09753faf3</originalsourceid><addsrcrecordid>eNqdkE1LAzEURYMoWKsL_0F2ojCaTJJJsizFLyi40Y2bEDOJjcxMxiRTqL_elBbcu3qLe7iPcwG4xOgWY9zc4VtMBUYUH4EZZjWqBGPyGMwQJ7SqMcKn4CylL4RQXaNmBt4XOfQ-ZW-gszpP0cJkdGdhH1rb-eETBgfz2sLssx781EMfBv9jWziut8kXFG70GCJs7RiSzyWFYwzGpnQOTpzukr043Dl4e7h_XT5Vq5fH5-ViVRlSy1xZKighjTTC0QYR1iAjW0E4NlzWXNRWYIZKaLkThGkqP2jLKHdIckacdmQOrva95e_3ZFNWRcjYrtODDVNSvNRiLgkp5PWeNDGkFK1TY_S9jluFkdrNp7A6zFfYmz2bTDHfef0P3oT4B6qxdeQXTnN-Lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746017933</pqid></control><display><type>article</type><title>Atomistic feature scale modeling of the titanium ionized physical vapor deposition process</title><source>American Institute of Physics (AIP) Journals</source><creator>Kersch, A. ; Hansen, U.</creator><creatorcontrib>Kersch, A. ; Hansen, U.</creatorcontrib><description>We develop a fundamental model to simulate the ionized physical vapor deposition process of a titanium barrier into submicron features. Using molecular dynamics techniques we calculate for typical energies the energy and angular dependent reaction rates of Ti + with Ti and Ar + with Ti including the distribution of the etched away particles. The interaction potential is based on Ackland’s model [G. J. Ackland, Philos. Mag. A 66, 917 (1992)] and is extended for particles with a kinetic energy up to 150 eV. The reaction rates are implemented into a cellular automaton feature scale simulator modeling the thin film growth. The reactor and plasma sheath conditions are described in a simple model providing the energy and angular distribution for the feature scale simulator. The multiscale model is applied to barrier deposition into a high aspect ratio feature with different substrate bias conditions. The results show that the barrier growth at high energy is dominated by kinetic energy driven processes.</description><identifier>ISSN: 0734-2101</identifier><identifier>EISSN: 1520-8559</identifier><identifier>DOI: 10.1116/1.1481041</identifier><identifier>CODEN: JVTAD6</identifier><language>eng</language><subject>Aspect ratio ; Atomic physics ; Computer simulation ; Film growth ; Ionization ; Kinetic energy ; Mathematical models ; Molecular dynamics ; Physical vapor deposition ; Rate constants</subject><ispartof>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films, 2002-07, Vol.20 (4), p.1284-1294</ispartof><rights>American Vacuum Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-e4843369c8f4603560c9d8371c792782e8150c8fe7f835a49b4d547f09753faf3</citedby><cites>FETCH-LOGICAL-c329t-e4843369c8f4603560c9d8371c792782e8150c8fe7f835a49b4d547f09753faf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Kersch, A.</creatorcontrib><creatorcontrib>Hansen, U.</creatorcontrib><title>Atomistic feature scale modeling of the titanium ionized physical vapor deposition process</title><title>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</title><description>We develop a fundamental model to simulate the ionized physical vapor deposition process of a titanium barrier into submicron features. Using molecular dynamics techniques we calculate for typical energies the energy and angular dependent reaction rates of Ti + with Ti and Ar + with Ti including the distribution of the etched away particles. The interaction potential is based on Ackland’s model [G. J. Ackland, Philos. Mag. A 66, 917 (1992)] and is extended for particles with a kinetic energy up to 150 eV. The reaction rates are implemented into a cellular automaton feature scale simulator modeling the thin film growth. The reactor and plasma sheath conditions are described in a simple model providing the energy and angular distribution for the feature scale simulator. The multiscale model is applied to barrier deposition into a high aspect ratio feature with different substrate bias conditions. The results show that the barrier growth at high energy is dominated by kinetic energy driven processes.</description><subject>Aspect ratio</subject><subject>Atomic physics</subject><subject>Computer simulation</subject><subject>Film growth</subject><subject>Ionization</subject><subject>Kinetic energy</subject><subject>Mathematical models</subject><subject>Molecular dynamics</subject><subject>Physical vapor deposition</subject><subject>Rate constants</subject><issn>0734-2101</issn><issn>1520-8559</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LAzEURYMoWKsL_0F2ojCaTJJJsizFLyi40Y2bEDOJjcxMxiRTqL_elBbcu3qLe7iPcwG4xOgWY9zc4VtMBUYUH4EZZjWqBGPyGMwQJ7SqMcKn4CylL4RQXaNmBt4XOfQ-ZW-gszpP0cJkdGdhH1rb-eETBgfz2sLssx781EMfBv9jWziut8kXFG70GCJs7RiSzyWFYwzGpnQOTpzukr043Dl4e7h_XT5Vq5fH5-ViVRlSy1xZKighjTTC0QYR1iAjW0E4NlzWXNRWYIZKaLkThGkqP2jLKHdIckacdmQOrva95e_3ZFNWRcjYrtODDVNSvNRiLgkp5PWeNDGkFK1TY_S9jluFkdrNp7A6zFfYmz2bTDHfef0P3oT4B6qxdeQXTnN-Lg</recordid><startdate>20020701</startdate><enddate>20020701</enddate><creator>Kersch, A.</creator><creator>Hansen, U.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>20020701</creationdate><title>Atomistic feature scale modeling of the titanium ionized physical vapor deposition process</title><author>Kersch, A. ; Hansen, U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-e4843369c8f4603560c9d8371c792782e8150c8fe7f835a49b4d547f09753faf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Aspect ratio</topic><topic>Atomic physics</topic><topic>Computer simulation</topic><topic>Film growth</topic><topic>Ionization</topic><topic>Kinetic energy</topic><topic>Mathematical models</topic><topic>Molecular dynamics</topic><topic>Physical vapor deposition</topic><topic>Rate constants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kersch, A.</creatorcontrib><creatorcontrib>Hansen, U.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kersch, A.</au><au>Hansen, U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomistic feature scale modeling of the titanium ionized physical vapor deposition process</atitle><jtitle>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</jtitle><date>2002-07-01</date><risdate>2002</risdate><volume>20</volume><issue>4</issue><spage>1284</spage><epage>1294</epage><pages>1284-1294</pages><issn>0734-2101</issn><eissn>1520-8559</eissn><coden>JVTAD6</coden><abstract>We develop a fundamental model to simulate the ionized physical vapor deposition process of a titanium barrier into submicron features. Using molecular dynamics techniques we calculate for typical energies the energy and angular dependent reaction rates of Ti + with Ti and Ar + with Ti including the distribution of the etched away particles. The interaction potential is based on Ackland’s model [G. J. Ackland, Philos. Mag. A 66, 917 (1992)] and is extended for particles with a kinetic energy up to 150 eV. The reaction rates are implemented into a cellular automaton feature scale simulator modeling the thin film growth. The reactor and plasma sheath conditions are described in a simple model providing the energy and angular distribution for the feature scale simulator. The multiscale model is applied to barrier deposition into a high aspect ratio feature with different substrate bias conditions. The results show that the barrier growth at high energy is dominated by kinetic energy driven processes.</abstract><doi>10.1116/1.1481041</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0734-2101
ispartof Journal of vacuum science & technology. A, Vacuum, surfaces, and films, 2002-07, Vol.20 (4), p.1284-1294
issn 0734-2101
1520-8559
language eng
recordid cdi_proquest_miscellaneous_746017933
source American Institute of Physics (AIP) Journals
subjects Aspect ratio
Atomic physics
Computer simulation
Film growth
Ionization
Kinetic energy
Mathematical models
Molecular dynamics
Physical vapor deposition
Rate constants
title Atomistic feature scale modeling of the titanium ionized physical vapor deposition process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomistic%20feature%20scale%20modeling%20of%20the%20titanium%20ionized%20physical%20vapor%20deposition%20process&rft.jtitle=Journal%20of%20vacuum%20science%20&%20technology.%20A,%20Vacuum,%20surfaces,%20and%20films&rft.au=Kersch,%20A.&rft.date=2002-07-01&rft.volume=20&rft.issue=4&rft.spage=1284&rft.epage=1294&rft.pages=1284-1294&rft.issn=0734-2101&rft.eissn=1520-8559&rft.coden=JVTAD6&rft_id=info:doi/10.1116/1.1481041&rft_dat=%3Cproquest_scita%3E746017933%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=746017933&rft_id=info:pmid/&rfr_iscdi=true