Nonlinear Kinematic-Wave Model for Predicting Open-Channel Flow Rate

An approximate model for predicting open-channel flow rate is developed. The Saint-Venant equations are approximated by a nonlinear kinematic equation for flow depth. The flow velocity is formulated as a function of flow depth to satisfy the continuity of flow. The model has two constants expressed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydraulic engineering (New York, N.Y.) N.Y.), 1999-08, Vol.125 (8), p.886-889
1. Verfasser: Odai, Samuel Nii
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 889
container_issue 8
container_start_page 886
container_title Journal of hydraulic engineering (New York, N.Y.)
container_volume 125
creator Odai, Samuel Nii
description An approximate model for predicting open-channel flow rate is developed. The Saint-Venant equations are approximated by a nonlinear kinematic equation for flow depth. The flow velocity is formulated as a function of flow depth to satisfy the continuity of flow. The model has two constants expressed in terms of the Froude number of initial uniform flow to partially satisfy the dynamic equation for small perturbations of flow depth about an initial constant value. Under subcritical flow conditions the model gives results close to those of the Saint-Venant equations. For a given upstream flow depth the approximate magnitude of flow rate at a downstream section is readily obtained in analytical form. The model is simple, and may be useful for rapid calculations during channel routing.
doi_str_mv 10.1061/(ASCE)0733-9429(1999)125:8(886)
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746016356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27051950</sourcerecordid><originalsourceid>FETCH-LOGICAL-a441t-9f0de6c3ca53ef773211579a0838704f91cc1ce945b2becf33307eb4ec0fbc843</originalsourceid><addsrcrecordid>eNp9kcFuEzEQhq0KJELhHfZQtclhYWbtXdsckKo0pdDSIgqiN8txxmWrjTfYmyLeHi8pcOtcZiR_-mf0mbEjhFcIDb6eHl_PFzOQnJdaVHqKWusZVvUbNVWqme2xCWrBS6kBnrDJP-4Ze57SHQCKRqsJO7nsQ9cGsrE4z21th9aV3-w9FR_7FXWF72PxKdKqdUMbbourDYVy_t2GkN9Ou_5n8dkO9II99bZL9PKh77Ovp4sv87Py4urd-_nxRWmFwKHUHlbUOO5szclLySvEWmoLiisJwmt0Dh1pUS-rJTnPOQdJS0EO_NIpwffZ0S53E_sfW0qDWbfJUdfZQP02GSkawIbXTSYPHyUrCTXqGjL4dge62KcUyZtNbNc2_jIIZvRszOjZjP7M6M-Mnk32bJTJnnPAwcMmm5ztfLTBtel_ipISOGbsZodlisxdv40hmzIfzhaXJwryd1Q1jDXOOfbPjH9PePyC37otlUM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27051950</pqid></control><display><type>article</type><title>Nonlinear Kinematic-Wave Model for Predicting Open-Channel Flow Rate</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Odai, Samuel Nii</creator><creatorcontrib>Odai, Samuel Nii</creatorcontrib><description>An approximate model for predicting open-channel flow rate is developed. The Saint-Venant equations are approximated by a nonlinear kinematic equation for flow depth. The flow velocity is formulated as a function of flow depth to satisfy the continuity of flow. The model has two constants expressed in terms of the Froude number of initial uniform flow to partially satisfy the dynamic equation for small perturbations of flow depth about an initial constant value. Under subcritical flow conditions the model gives results close to those of the Saint-Venant equations. For a given upstream flow depth the approximate magnitude of flow rate at a downstream section is readily obtained in analytical form. The model is simple, and may be useful for rapid calculations during channel routing.</description><identifier>ISSN: 0733-9429</identifier><identifier>EISSN: 1943-7900</identifier><identifier>DOI: 10.1061/(ASCE)0733-9429(1999)125:8(886)</identifier><identifier>CODEN: JHEND8</identifier><language>eng</language><publisher>Reston, VA: American Society of Civil Engineers</publisher><subject>Applied sciences ; Buildings. Public works ; Exact sciences and technology ; Hydraulic constructions ; Mathematical models ; Nonlinear equations ; Numerical methods ; Stream flow ; TECHNICAL NOTES ; Velocity ; Water waves</subject><ispartof>Journal of hydraulic engineering (New York, N.Y.), 1999-08, Vol.125 (8), p.886-889</ispartof><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a441t-9f0de6c3ca53ef773211579a0838704f91cc1ce945b2becf33307eb4ec0fbc843</citedby><cites>FETCH-LOGICAL-a441t-9f0de6c3ca53ef773211579a0838704f91cc1ce945b2becf33307eb4ec0fbc843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)0733-9429(1999)125:8(886)$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9429(1999)125:8(886)$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,76193,76201</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1877031$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Odai, Samuel Nii</creatorcontrib><title>Nonlinear Kinematic-Wave Model for Predicting Open-Channel Flow Rate</title><title>Journal of hydraulic engineering (New York, N.Y.)</title><description>An approximate model for predicting open-channel flow rate is developed. The Saint-Venant equations are approximated by a nonlinear kinematic equation for flow depth. The flow velocity is formulated as a function of flow depth to satisfy the continuity of flow. The model has two constants expressed in terms of the Froude number of initial uniform flow to partially satisfy the dynamic equation for small perturbations of flow depth about an initial constant value. Under subcritical flow conditions the model gives results close to those of the Saint-Venant equations. For a given upstream flow depth the approximate magnitude of flow rate at a downstream section is readily obtained in analytical form. The model is simple, and may be useful for rapid calculations during channel routing.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Exact sciences and technology</subject><subject>Hydraulic constructions</subject><subject>Mathematical models</subject><subject>Nonlinear equations</subject><subject>Numerical methods</subject><subject>Stream flow</subject><subject>TECHNICAL NOTES</subject><subject>Velocity</subject><subject>Water waves</subject><issn>0733-9429</issn><issn>1943-7900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp9kcFuEzEQhq0KJELhHfZQtclhYWbtXdsckKo0pdDSIgqiN8txxmWrjTfYmyLeHi8pcOtcZiR_-mf0mbEjhFcIDb6eHl_PFzOQnJdaVHqKWusZVvUbNVWqme2xCWrBS6kBnrDJP-4Ze57SHQCKRqsJO7nsQ9cGsrE4z21th9aV3-w9FR_7FXWF72PxKdKqdUMbbourDYVy_t2GkN9Ou_5n8dkO9II99bZL9PKh77Ovp4sv87Py4urd-_nxRWmFwKHUHlbUOO5szclLySvEWmoLiisJwmt0Dh1pUS-rJTnPOQdJS0EO_NIpwffZ0S53E_sfW0qDWbfJUdfZQP02GSkawIbXTSYPHyUrCTXqGjL4dge62KcUyZtNbNc2_jIIZvRszOjZjP7M6M-Mnk32bJTJnnPAwcMmm5ztfLTBtel_ipISOGbsZodlisxdv40hmzIfzhaXJwryd1Q1jDXOOfbPjH9PePyC37otlUM</recordid><startdate>19990801</startdate><enddate>19990801</enddate><creator>Odai, Samuel Nii</creator><general>American Society of Civil Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7TC</scope></search><sort><creationdate>19990801</creationdate><title>Nonlinear Kinematic-Wave Model for Predicting Open-Channel Flow Rate</title><author>Odai, Samuel Nii</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a441t-9f0de6c3ca53ef773211579a0838704f91cc1ce945b2becf33307eb4ec0fbc843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Exact sciences and technology</topic><topic>Hydraulic constructions</topic><topic>Mathematical models</topic><topic>Nonlinear equations</topic><topic>Numerical methods</topic><topic>Stream flow</topic><topic>TECHNICAL NOTES</topic><topic>Velocity</topic><topic>Water waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Odai, Samuel Nii</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Journal of hydraulic engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Odai, Samuel Nii</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Kinematic-Wave Model for Predicting Open-Channel Flow Rate</atitle><jtitle>Journal of hydraulic engineering (New York, N.Y.)</jtitle><date>1999-08-01</date><risdate>1999</risdate><volume>125</volume><issue>8</issue><spage>886</spage><epage>889</epage><pages>886-889</pages><issn>0733-9429</issn><eissn>1943-7900</eissn><coden>JHEND8</coden><abstract>An approximate model for predicting open-channel flow rate is developed. The Saint-Venant equations are approximated by a nonlinear kinematic equation for flow depth. The flow velocity is formulated as a function of flow depth to satisfy the continuity of flow. The model has two constants expressed in terms of the Froude number of initial uniform flow to partially satisfy the dynamic equation for small perturbations of flow depth about an initial constant value. Under subcritical flow conditions the model gives results close to those of the Saint-Venant equations. For a given upstream flow depth the approximate magnitude of flow rate at a downstream section is readily obtained in analytical form. The model is simple, and may be useful for rapid calculations during channel routing.</abstract><cop>Reston, VA</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)0733-9429(1999)125:8(886)</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0733-9429
ispartof Journal of hydraulic engineering (New York, N.Y.), 1999-08, Vol.125 (8), p.886-889
issn 0733-9429
1943-7900
language eng
recordid cdi_proquest_miscellaneous_746016356
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Applied sciences
Buildings. Public works
Exact sciences and technology
Hydraulic constructions
Mathematical models
Nonlinear equations
Numerical methods
Stream flow
TECHNICAL NOTES
Velocity
Water waves
title Nonlinear Kinematic-Wave Model for Predicting Open-Channel Flow Rate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A24%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Kinematic-Wave%20Model%20for%20Predicting%20Open-Channel%20Flow%20Rate&rft.jtitle=Journal%20of%20hydraulic%20engineering%20(New%20York,%20N.Y.)&rft.au=Odai,%20Samuel%20Nii&rft.date=1999-08-01&rft.volume=125&rft.issue=8&rft.spage=886&rft.epage=889&rft.pages=886-889&rft.issn=0733-9429&rft.eissn=1943-7900&rft.coden=JHEND8&rft_id=info:doi/10.1061/(ASCE)0733-9429(1999)125:8(886)&rft_dat=%3Cproquest_cross%3E27051950%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27051950&rft_id=info:pmid/&rfr_iscdi=true