Ancestral polymorphism in exon 2 of bluethroat (Luscinia svecica) MHC class II B genes

The genes of the major histocompatibility complex (MHC) are important model genes for understanding selective forces in evolution. Here, we document, using a cloning and sequencing approach, high polymorphism at the exon 2 of the MHC class II B (MHCIIB) genes in the bluethroat (Luscinia svecica); a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of evolutionary biology 2010-06, Vol.23 (6), p.1206-1217
Hauptverfasser: ANMARKRUD, J. A., JOHNSEN, A., BACHMANN, L., LIFJELD, J. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The genes of the major histocompatibility complex (MHC) are important model genes for understanding selective forces in evolution. Here, we document, using a cloning and sequencing approach, high polymorphism at the exon 2 of the MHC class II B (MHCIIB) genes in the bluethroat (Luscinia svecica); a minimum of 61 unique alleles were detected in 20 individuals, and at least 11 functional loci. In addition, several pseudogenes were revealed. The specimens originated from three different bluethroat subspecies (azuricollis, cyanecula and svecica), and we also analysed four specimens of the closely related thrush nightingale (L. luscinia) for comparison. Phylogenetic analyses of the functional alleles revealed 258 equally parsimonious trees with poor statistical support for the majority of nodes. The distribution of the sequences in the trees point to an ancestral origin of the polymorphism in MHC class II B genes, a portion of which predated the phylogenetic split between the bluethroat and the thrush nightingale. Strong signatures of balancing selection were uncovered for the codons coding for the peptide‐binding residues of the functional MHCIIB exon 2 alleles. Our results highlight the importance of duplication and recombination events for shaping passerine MHC and give insights in the evolutionary dynamics of MHC variation among closely related taxa.
ISSN:1010-061X
1420-9101
DOI:10.1111/j.1420-9101.2010.01999.x