Structure determination of the seven-helix transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy

Membrane proteins pose a huge challenge for structural analysis, but a new study reports the first NMR structure determination of a detergent-solubilized seven-helical transmembrane (7TM) protein, the phototaxis receptor sensory rhodopsin II. This case study may open the doors to similar solution NM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature Structural & Molecular Biology 2010-06, Vol.17 (6), p.768-774
Hauptverfasser: Nietlispach, Daniel, Mott, Helen R, Gautier, Antoine, Bostock, Mark J, Kirkpatrick, John P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 774
container_issue 6
container_start_page 768
container_title Nature Structural & Molecular Biology
container_volume 17
creator Nietlispach, Daniel
Mott, Helen R
Gautier, Antoine
Bostock, Mark J
Kirkpatrick, John P
description Membrane proteins pose a huge challenge for structural analysis, but a new study reports the first NMR structure determination of a detergent-solubilized seven-helical transmembrane (7TM) protein, the phototaxis receptor sensory rhodopsin II. This case study may open the doors to similar solution NMR structures for other 7TM proteins. Seven-helix membrane proteins represent a challenge for structural biology. Here we report the first NMR structure determination of a detergent-solubilized seven-helix transmembrane (7TM) protein, the phototaxis receptor sensory rhodopsin II (pSRII) from Natronomonas pharaonis , as a proof of principle. The overall quality of the structure ensemble is good (backbone r.m.s. deviation of 0.48 Å) and agrees well with previously determined X-ray structures. Furthermore, measurements in more native-like small phospholipid bicelles indicate that the protein structure is the same as in detergent micelles, suggesting that environment-specific effects are minimal when using mild detergents. We use our case study as a platform to discuss the feasibility of similar solution NMR studies for other 7TM proteins, including members of the family of G protein–coupled receptors.
doi_str_mv 10.1038/nsmb.1807
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_746011437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A228716190</galeid><sourcerecordid>A228716190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c604t-6822d210a4aa47d90d5352d72fdca293e77b6e02827debf26569240ad432d8633</originalsourceid><addsrcrecordid>eNqFkltrFDEUxwdR7EUf_AIa9EEUZs11knksxctCVWj1OWSSM7tTZiZjkpHut2_WrVsqC5KHE5Lf-Z8L_6J4QfCCYKY-jHFoFkRh-ag4JoKLsq6VeLy_1-yoOInxGmMqhGRPiyOKBaFE4OMiXqUw2zQHQA4ShKEbTer8iHyL0hpQhN8wlmvouxuUgsmVYGhyBBTAwpR8yMgYfdigsPbOT7Eb0XKJmg2Kvp__SH37eoniBDYFH62fNs-KJ63pIzy_i6fFz08ff5x_KS--f16en12UtsI8lZWi1FGCDTeGS1djJ5igTtLWWUNrBlI2FWCqqHTQtLQSVU05No4z6lTF2Gnxdqc7Bf9rhpj00EULfZ_b93PUkleYEM7k_0nGMqcqkcnX_5DXfg5jHkMrrnK3XG7l3uyglelBd2Pr8-rsVlKfUaokqUiNM7U4QOXjYOisH6Ht8vuDhHcPEjKT4CatzByjXl5dHmRtXnoM0OopdIMJG02w3ppGb02jt6bJ7Mu7meZmALcn_7okA-93QMxf4wrC_dCH1F7t4GykbKu92j1xC3hC1N0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>848210477</pqid></control><display><type>article</type><title>Structure determination of the seven-helix transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Nietlispach, Daniel ; Mott, Helen R ; Gautier, Antoine ; Bostock, Mark J ; Kirkpatrick, John P</creator><creatorcontrib>Nietlispach, Daniel ; Mott, Helen R ; Gautier, Antoine ; Bostock, Mark J ; Kirkpatrick, John P</creatorcontrib><description>Membrane proteins pose a huge challenge for structural analysis, but a new study reports the first NMR structure determination of a detergent-solubilized seven-helical transmembrane (7TM) protein, the phototaxis receptor sensory rhodopsin II. This case study may open the doors to similar solution NMR structures for other 7TM proteins. Seven-helix membrane proteins represent a challenge for structural biology. Here we report the first NMR structure determination of a detergent-solubilized seven-helix transmembrane (7TM) protein, the phototaxis receptor sensory rhodopsin II (pSRII) from Natronomonas pharaonis , as a proof of principle. The overall quality of the structure ensemble is good (backbone r.m.s. deviation of 0.48 Å) and agrees well with previously determined X-ray structures. Furthermore, measurements in more native-like small phospholipid bicelles indicate that the protein structure is the same as in detergent micelles, suggesting that environment-specific effects are minimal when using mild detergents. We use our case study as a platform to discuss the feasibility of similar solution NMR studies for other 7TM proteins, including members of the family of G protein–coupled receptors.</description><identifier>ISSN: 1545-9993</identifier><identifier>ISSN: 1545-9985</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/nsmb.1807</identifier><identifier>PMID: 20512150</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/1647/2258 ; 631/45/535/878 ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; Case studies ; Cell receptors ; Detergents ; Halobacteriaceae - chemistry ; Halorhodopsins - chemistry ; Hydrophobic and Hydrophilic Interactions ; Life Sciences ; Membrane Biology ; Membrane proteins ; Membranes ; Micelles ; Models, Molecular ; Molecular biology ; Molecular structure ; NMR ; Nuclear magnetic resonance ; Nuclear magnetic resonance spectroscopy ; Nuclear Magnetic Resonance, Biomolecular ; Physiological aspects ; Protein Stability ; Protein Structure ; Protein Structure, Secondary ; Proteins ; Receptors, G-Protein-Coupled - chemistry ; Rhodopsin ; Sensory Rhodopsins - chemistry ; Solubility ; Structure ; technical-report ; Thermodynamics</subject><ispartof>Nature Structural &amp; Molecular Biology, 2010-06, Vol.17 (6), p.768-774</ispartof><rights>Springer Nature America, Inc. 2010</rights><rights>COPYRIGHT 2010 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c604t-6822d210a4aa47d90d5352d72fdca293e77b6e02827debf26569240ad432d8633</citedby><cites>FETCH-LOGICAL-c604t-6822d210a4aa47d90d5352d72fdca293e77b6e02827debf26569240ad432d8633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nsmb.1807$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nsmb.1807$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20512150$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nietlispach, Daniel</creatorcontrib><creatorcontrib>Mott, Helen R</creatorcontrib><creatorcontrib>Gautier, Antoine</creatorcontrib><creatorcontrib>Bostock, Mark J</creatorcontrib><creatorcontrib>Kirkpatrick, John P</creatorcontrib><title>Structure determination of the seven-helix transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy</title><title>Nature Structural &amp; Molecular Biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>Membrane proteins pose a huge challenge for structural analysis, but a new study reports the first NMR structure determination of a detergent-solubilized seven-helical transmembrane (7TM) protein, the phototaxis receptor sensory rhodopsin II. This case study may open the doors to similar solution NMR structures for other 7TM proteins. Seven-helix membrane proteins represent a challenge for structural biology. Here we report the first NMR structure determination of a detergent-solubilized seven-helix transmembrane (7TM) protein, the phototaxis receptor sensory rhodopsin II (pSRII) from Natronomonas pharaonis , as a proof of principle. The overall quality of the structure ensemble is good (backbone r.m.s. deviation of 0.48 Å) and agrees well with previously determined X-ray structures. Furthermore, measurements in more native-like small phospholipid bicelles indicate that the protein structure is the same as in detergent micelles, suggesting that environment-specific effects are minimal when using mild detergents. We use our case study as a platform to discuss the feasibility of similar solution NMR studies for other 7TM proteins, including members of the family of G protein–coupled receptors.</description><subject>631/1647/2258</subject><subject>631/45/535/878</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Case studies</subject><subject>Cell receptors</subject><subject>Detergents</subject><subject>Halobacteriaceae - chemistry</subject><subject>Halorhodopsins - chemistry</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Life Sciences</subject><subject>Membrane Biology</subject><subject>Membrane proteins</subject><subject>Membranes</subject><subject>Micelles</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Molecular structure</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear magnetic resonance spectroscopy</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Physiological aspects</subject><subject>Protein Stability</subject><subject>Protein Structure</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Receptors, G-Protein-Coupled - chemistry</subject><subject>Rhodopsin</subject><subject>Sensory Rhodopsins - chemistry</subject><subject>Solubility</subject><subject>Structure</subject><subject>technical-report</subject><subject>Thermodynamics</subject><issn>1545-9993</issn><issn>1545-9985</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkltrFDEUxwdR7EUf_AIa9EEUZs11knksxctCVWj1OWSSM7tTZiZjkpHut2_WrVsqC5KHE5Lf-Z8L_6J4QfCCYKY-jHFoFkRh-ag4JoKLsq6VeLy_1-yoOInxGmMqhGRPiyOKBaFE4OMiXqUw2zQHQA4ShKEbTer8iHyL0hpQhN8wlmvouxuUgsmVYGhyBBTAwpR8yMgYfdigsPbOT7Eb0XKJmg2Kvp__SH37eoniBDYFH62fNs-KJ63pIzy_i6fFz08ff5x_KS--f16en12UtsI8lZWi1FGCDTeGS1djJ5igTtLWWUNrBlI2FWCqqHTQtLQSVU05No4z6lTF2Gnxdqc7Bf9rhpj00EULfZ_b93PUkleYEM7k_0nGMqcqkcnX_5DXfg5jHkMrrnK3XG7l3uyglelBd2Pr8-rsVlKfUaokqUiNM7U4QOXjYOisH6Ht8vuDhHcPEjKT4CatzByjXl5dHmRtXnoM0OopdIMJG02w3ppGb02jt6bJ7Mu7meZmALcn_7okA-93QMxf4wrC_dCH1F7t4GykbKu92j1xC3hC1N0</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Nietlispach, Daniel</creator><creator>Mott, Helen R</creator><creator>Gautier, Antoine</creator><creator>Bostock, Mark J</creator><creator>Kirkpatrick, John P</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20100601</creationdate><title>Structure determination of the seven-helix transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy</title><author>Nietlispach, Daniel ; Mott, Helen R ; Gautier, Antoine ; Bostock, Mark J ; Kirkpatrick, John P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c604t-6822d210a4aa47d90d5352d72fdca293e77b6e02827debf26569240ad432d8633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>631/1647/2258</topic><topic>631/45/535/878</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Case studies</topic><topic>Cell receptors</topic><topic>Detergents</topic><topic>Halobacteriaceae - chemistry</topic><topic>Halorhodopsins - chemistry</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Life Sciences</topic><topic>Membrane Biology</topic><topic>Membrane proteins</topic><topic>Membranes</topic><topic>Micelles</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Molecular structure</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear magnetic resonance spectroscopy</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Physiological aspects</topic><topic>Protein Stability</topic><topic>Protein Structure</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Receptors, G-Protein-Coupled - chemistry</topic><topic>Rhodopsin</topic><topic>Sensory Rhodopsins - chemistry</topic><topic>Solubility</topic><topic>Structure</topic><topic>technical-report</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nietlispach, Daniel</creatorcontrib><creatorcontrib>Mott, Helen R</creatorcontrib><creatorcontrib>Gautier, Antoine</creatorcontrib><creatorcontrib>Bostock, Mark J</creatorcontrib><creatorcontrib>Kirkpatrick, John P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature Structural &amp; Molecular Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nietlispach, Daniel</au><au>Mott, Helen R</au><au>Gautier, Antoine</au><au>Bostock, Mark J</au><au>Kirkpatrick, John P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure determination of the seven-helix transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy</atitle><jtitle>Nature Structural &amp; Molecular Biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2010-06-01</date><risdate>2010</risdate><volume>17</volume><issue>6</issue><spage>768</spage><epage>774</epage><pages>768-774</pages><issn>1545-9993</issn><issn>1545-9985</issn><eissn>1545-9985</eissn><abstract>Membrane proteins pose a huge challenge for structural analysis, but a new study reports the first NMR structure determination of a detergent-solubilized seven-helical transmembrane (7TM) protein, the phototaxis receptor sensory rhodopsin II. This case study may open the doors to similar solution NMR structures for other 7TM proteins. Seven-helix membrane proteins represent a challenge for structural biology. Here we report the first NMR structure determination of a detergent-solubilized seven-helix transmembrane (7TM) protein, the phototaxis receptor sensory rhodopsin II (pSRII) from Natronomonas pharaonis , as a proof of principle. The overall quality of the structure ensemble is good (backbone r.m.s. deviation of 0.48 Å) and agrees well with previously determined X-ray structures. Furthermore, measurements in more native-like small phospholipid bicelles indicate that the protein structure is the same as in detergent micelles, suggesting that environment-specific effects are minimal when using mild detergents. We use our case study as a platform to discuss the feasibility of similar solution NMR studies for other 7TM proteins, including members of the family of G protein–coupled receptors.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>20512150</pmid><doi>10.1038/nsmb.1807</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-9993
ispartof Nature Structural & Molecular Biology, 2010-06, Vol.17 (6), p.768-774
issn 1545-9993
1545-9985
1545-9985
language eng
recordid cdi_proquest_miscellaneous_746011437
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 631/1647/2258
631/45/535/878
Biochemistry
Biological Microscopy
Biomedical and Life Sciences
Case studies
Cell receptors
Detergents
Halobacteriaceae - chemistry
Halorhodopsins - chemistry
Hydrophobic and Hydrophilic Interactions
Life Sciences
Membrane Biology
Membrane proteins
Membranes
Micelles
Models, Molecular
Molecular biology
Molecular structure
NMR
Nuclear magnetic resonance
Nuclear magnetic resonance spectroscopy
Nuclear Magnetic Resonance, Biomolecular
Physiological aspects
Protein Stability
Protein Structure
Protein Structure, Secondary
Proteins
Receptors, G-Protein-Coupled - chemistry
Rhodopsin
Sensory Rhodopsins - chemistry
Solubility
Structure
technical-report
Thermodynamics
title Structure determination of the seven-helix transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A32%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20determination%20of%20the%20seven-helix%20transmembrane%20receptor%20sensory%20rhodopsin%20II%20by%20solution%20NMR%20spectroscopy&rft.jtitle=Nature%20Structural%20&%20Molecular%20Biology&rft.au=Nietlispach,%20Daniel&rft.date=2010-06-01&rft.volume=17&rft.issue=6&rft.spage=768&rft.epage=774&rft.pages=768-774&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/nsmb.1807&rft_dat=%3Cgale_proqu%3EA228716190%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=848210477&rft_id=info:pmid/20512150&rft_galeid=A228716190&rfr_iscdi=true