Hydrogen metabolism in the extreme thermophile Thermotoga neapolitana
Anaerobic growth of Thermotoga neapolitana led maximum to hydrogen yield of 3.85 ± 0.07 mol H 2/mol glucose and production rate of 51 ml/l/h. This productivity is strongly affected by stirring, pH buffering, N 2 sparging and culture/headspace volume ratio. Embden–Meyerhoff pathway is the only glycol...
Gespeichert in:
Veröffentlicht in: | International journal of hydrogen energy 2010-03, Vol.35 (6), p.2290-2295 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2295 |
---|---|
container_issue | 6 |
container_start_page | 2290 |
container_title | International journal of hydrogen energy |
container_volume | 35 |
creator | d'Ippolito, Giuliana Dipasquale, Laura Vella, Filomena Monica Romano, Ida Gambacorta, Agata Cutignano, Adele Fontana, Angelo |
description | Anaerobic growth of
Thermotoga neapolitana led maximum to hydrogen yield of 3.85 ± 0.07 mol H
2/mol glucose and production rate of 51 ml/l/h. This productivity is strongly affected by stirring, pH buffering, N
2 sparging and culture/headspace volume ratio. Embden–Meyerhoff pathway is the only glycolytic route in
T. neapolitana but, under the conditions used in this study, about 12–15% of the biogas requires consumption of protein source. Reduction of the hydrogen yields below the theoretical 4 mol H
2/mol glucose is mainly due to production of lactate and alanine that affect the availability of pyruvate/NADH for the hydrogenase, as well as to loss of part of glucose by conversion to fructose that is eventually released in the medium. Hydrogen productivity is modulated during the bacterial growth and major biogas synthesis is recorded in the stationary phase in concomitance with reduction of lactate synthesis. Apparently, this event is not consistent with an equal increase in acetate production. In agreement with the hydrogenase model recently proposed for the sister species
Thermotoga maritima, this suggests that cellular NADH
+ ratio has a crucial role on biogas synthesis. |
doi_str_mv | 10.1016/j.ijhydene.2009.12.044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746006225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319909019727</els_id><sourcerecordid>746006225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-25dbae2bb6795989f192a1e8a1774e1a27d29a2cc2281c7560928812f24048dc3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqXwF1AWxJRgXxw73kBVoUiVWMpsOc6ldZSPYqeI_ntSWliZ7h2e9073EHLLaMIoEw914urNvsQOE6BUJQwSyvkZmbBcqjjluTwnE5oKGqdMqUtyFUJNKZOUqwmZL_al79fYRS0OpugbF9rIddGwwQi_Bo8tHrJv--3GNRitfvLQr03UodmO_GA6c00uKtMEvDnNKXl_nq9mi3j59vI6e1rGNpV8iCErC4NQFEKqTOWqYgoMw9wwKTkyA7IEZcBagJxZmQmqIM8ZVMApz0ubTsn9ce_W9x87DINuXbDYNKbDfhe05IJSAZCNpDiS1vcheKz01rvW-L1mVB-06Vr_atMHbZqBHrWNxbvTCROsaSpvOuvCXxtAAOeCjdzjkcPx30-HXgfrsLNYOo920GXv_jv1DeLPhp0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746006225</pqid></control><display><type>article</type><title>Hydrogen metabolism in the extreme thermophile Thermotoga neapolitana</title><source>Elsevier ScienceDirect Journals</source><creator>d'Ippolito, Giuliana ; Dipasquale, Laura ; Vella, Filomena Monica ; Romano, Ida ; Gambacorta, Agata ; Cutignano, Adele ; Fontana, Angelo</creator><creatorcontrib>d'Ippolito, Giuliana ; Dipasquale, Laura ; Vella, Filomena Monica ; Romano, Ida ; Gambacorta, Agata ; Cutignano, Adele ; Fontana, Angelo</creatorcontrib><description>Anaerobic growth of
Thermotoga neapolitana led maximum to hydrogen yield of 3.85 ± 0.07 mol H
2/mol glucose and production rate of 51 ml/l/h. This productivity is strongly affected by stirring, pH buffering, N
2 sparging and culture/headspace volume ratio. Embden–Meyerhoff pathway is the only glycolytic route in
T. neapolitana but, under the conditions used in this study, about 12–15% of the biogas requires consumption of protein source. Reduction of the hydrogen yields below the theoretical 4 mol H
2/mol glucose is mainly due to production of lactate and alanine that affect the availability of pyruvate/NADH for the hydrogenase, as well as to loss of part of glucose by conversion to fructose that is eventually released in the medium. Hydrogen productivity is modulated during the bacterial growth and major biogas synthesis is recorded in the stationary phase in concomitance with reduction of lactate synthesis. Apparently, this event is not consistent with an equal increase in acetate production. In agreement with the hydrogenase model recently proposed for the sister species
Thermotoga maritima, this suggests that cellular NADH
+ ratio has a crucial role on biogas synthesis.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2009.12.044</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Culture ; Energy ; Exact sciences and technology ; Fuels ; Glycolytic pathway ; Hydrogen ; Hydrogen production ; Labelling studies ; Metabolic studies ; Sugar fermentation ; Thermotoga maritima ; Thermotoga neapolitana</subject><ispartof>International journal of hydrogen energy, 2010-03, Vol.35 (6), p.2290-2295</ispartof><rights>2009 Professor T. Nejat Veziroglu</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-25dbae2bb6795989f192a1e8a1774e1a27d29a2cc2281c7560928812f24048dc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360319909019727$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22624461$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>d'Ippolito, Giuliana</creatorcontrib><creatorcontrib>Dipasquale, Laura</creatorcontrib><creatorcontrib>Vella, Filomena Monica</creatorcontrib><creatorcontrib>Romano, Ida</creatorcontrib><creatorcontrib>Gambacorta, Agata</creatorcontrib><creatorcontrib>Cutignano, Adele</creatorcontrib><creatorcontrib>Fontana, Angelo</creatorcontrib><title>Hydrogen metabolism in the extreme thermophile Thermotoga neapolitana</title><title>International journal of hydrogen energy</title><description>Anaerobic growth of
Thermotoga neapolitana led maximum to hydrogen yield of 3.85 ± 0.07 mol H
2/mol glucose and production rate of 51 ml/l/h. This productivity is strongly affected by stirring, pH buffering, N
2 sparging and culture/headspace volume ratio. Embden–Meyerhoff pathway is the only glycolytic route in
T. neapolitana but, under the conditions used in this study, about 12–15% of the biogas requires consumption of protein source. Reduction of the hydrogen yields below the theoretical 4 mol H
2/mol glucose is mainly due to production of lactate and alanine that affect the availability of pyruvate/NADH for the hydrogenase, as well as to loss of part of glucose by conversion to fructose that is eventually released in the medium. Hydrogen productivity is modulated during the bacterial growth and major biogas synthesis is recorded in the stationary phase in concomitance with reduction of lactate synthesis. Apparently, this event is not consistent with an equal increase in acetate production. In agreement with the hydrogenase model recently proposed for the sister species
Thermotoga maritima, this suggests that cellular NADH
+ ratio has a crucial role on biogas synthesis.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Culture</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Glycolytic pathway</subject><subject>Hydrogen</subject><subject>Hydrogen production</subject><subject>Labelling studies</subject><subject>Metabolic studies</subject><subject>Sugar fermentation</subject><subject>Thermotoga maritima</subject><subject>Thermotoga neapolitana</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqXwF1AWxJRgXxw73kBVoUiVWMpsOc6ldZSPYqeI_ntSWliZ7h2e9073EHLLaMIoEw914urNvsQOE6BUJQwSyvkZmbBcqjjluTwnE5oKGqdMqUtyFUJNKZOUqwmZL_al79fYRS0OpugbF9rIddGwwQi_Bo8tHrJv--3GNRitfvLQr03UodmO_GA6c00uKtMEvDnNKXl_nq9mi3j59vI6e1rGNpV8iCErC4NQFEKqTOWqYgoMw9wwKTkyA7IEZcBagJxZmQmqIM8ZVMApz0ubTsn9ce_W9x87DINuXbDYNKbDfhe05IJSAZCNpDiS1vcheKz01rvW-L1mVB-06Vr_atMHbZqBHrWNxbvTCROsaSpvOuvCXxtAAOeCjdzjkcPx30-HXgfrsLNYOo920GXv_jv1DeLPhp0</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>d'Ippolito, Giuliana</creator><creator>Dipasquale, Laura</creator><creator>Vella, Filomena Monica</creator><creator>Romano, Ida</creator><creator>Gambacorta, Agata</creator><creator>Cutignano, Adele</creator><creator>Fontana, Angelo</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope></search><sort><creationdate>20100301</creationdate><title>Hydrogen metabolism in the extreme thermophile Thermotoga neapolitana</title><author>d'Ippolito, Giuliana ; Dipasquale, Laura ; Vella, Filomena Monica ; Romano, Ida ; Gambacorta, Agata ; Cutignano, Adele ; Fontana, Angelo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-25dbae2bb6795989f192a1e8a1774e1a27d29a2cc2281c7560928812f24048dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Culture</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Glycolytic pathway</topic><topic>Hydrogen</topic><topic>Hydrogen production</topic><topic>Labelling studies</topic><topic>Metabolic studies</topic><topic>Sugar fermentation</topic><topic>Thermotoga maritima</topic><topic>Thermotoga neapolitana</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>d'Ippolito, Giuliana</creatorcontrib><creatorcontrib>Dipasquale, Laura</creatorcontrib><creatorcontrib>Vella, Filomena Monica</creatorcontrib><creatorcontrib>Romano, Ida</creatorcontrib><creatorcontrib>Gambacorta, Agata</creatorcontrib><creatorcontrib>Cutignano, Adele</creatorcontrib><creatorcontrib>Fontana, Angelo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>d'Ippolito, Giuliana</au><au>Dipasquale, Laura</au><au>Vella, Filomena Monica</au><au>Romano, Ida</au><au>Gambacorta, Agata</au><au>Cutignano, Adele</au><au>Fontana, Angelo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen metabolism in the extreme thermophile Thermotoga neapolitana</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>35</volume><issue>6</issue><spage>2290</spage><epage>2295</epage><pages>2290-2295</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>Anaerobic growth of
Thermotoga neapolitana led maximum to hydrogen yield of 3.85 ± 0.07 mol H
2/mol glucose and production rate of 51 ml/l/h. This productivity is strongly affected by stirring, pH buffering, N
2 sparging and culture/headspace volume ratio. Embden–Meyerhoff pathway is the only glycolytic route in
T. neapolitana but, under the conditions used in this study, about 12–15% of the biogas requires consumption of protein source. Reduction of the hydrogen yields below the theoretical 4 mol H
2/mol glucose is mainly due to production of lactate and alanine that affect the availability of pyruvate/NADH for the hydrogenase, as well as to loss of part of glucose by conversion to fructose that is eventually released in the medium. Hydrogen productivity is modulated during the bacterial growth and major biogas synthesis is recorded in the stationary phase in concomitance with reduction of lactate synthesis. Apparently, this event is not consistent with an equal increase in acetate production. In agreement with the hydrogenase model recently proposed for the sister species
Thermotoga maritima, this suggests that cellular NADH
+ ratio has a crucial role on biogas synthesis.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2009.12.044</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2010-03, Vol.35 (6), p.2290-2295 |
issn | 0360-3199 1879-3487 |
language | eng |
recordid | cdi_proquest_miscellaneous_746006225 |
source | Elsevier ScienceDirect Journals |
subjects | Alternative fuels. Production and utilization Applied sciences Culture Energy Exact sciences and technology Fuels Glycolytic pathway Hydrogen Hydrogen production Labelling studies Metabolic studies Sugar fermentation Thermotoga maritima Thermotoga neapolitana |
title | Hydrogen metabolism in the extreme thermophile Thermotoga neapolitana |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20metabolism%20in%20the%20extreme%20thermophile%20Thermotoga%20neapolitana&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=d'Ippolito,%20Giuliana&rft.date=2010-03-01&rft.volume=35&rft.issue=6&rft.spage=2290&rft.epage=2295&rft.pages=2290-2295&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2009.12.044&rft_dat=%3Cproquest_cross%3E746006225%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=746006225&rft_id=info:pmid/&rft_els_id=S0360319909019727&rfr_iscdi=true |