Hydrogen metabolism in the extreme thermophile Thermotoga neapolitana

Anaerobic growth of Thermotoga neapolitana led maximum to hydrogen yield of 3.85 ± 0.07 mol H 2/mol glucose and production rate of 51 ml/l/h. This productivity is strongly affected by stirring, pH buffering, N 2 sparging and culture/headspace volume ratio. Embden–Meyerhoff pathway is the only glycol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2010-03, Vol.35 (6), p.2290-2295
Hauptverfasser: d'Ippolito, Giuliana, Dipasquale, Laura, Vella, Filomena Monica, Romano, Ida, Gambacorta, Agata, Cutignano, Adele, Fontana, Angelo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2295
container_issue 6
container_start_page 2290
container_title International journal of hydrogen energy
container_volume 35
creator d'Ippolito, Giuliana
Dipasquale, Laura
Vella, Filomena Monica
Romano, Ida
Gambacorta, Agata
Cutignano, Adele
Fontana, Angelo
description Anaerobic growth of Thermotoga neapolitana led maximum to hydrogen yield of 3.85 ± 0.07 mol H 2/mol glucose and production rate of 51 ml/l/h. This productivity is strongly affected by stirring, pH buffering, N 2 sparging and culture/headspace volume ratio. Embden–Meyerhoff pathway is the only glycolytic route in T. neapolitana but, under the conditions used in this study, about 12–15% of the biogas requires consumption of protein source. Reduction of the hydrogen yields below the theoretical 4 mol H 2/mol glucose is mainly due to production of lactate and alanine that affect the availability of pyruvate/NADH for the hydrogenase, as well as to loss of part of glucose by conversion to fructose that is eventually released in the medium. Hydrogen productivity is modulated during the bacterial growth and major biogas synthesis is recorded in the stationary phase in concomitance with reduction of lactate synthesis. Apparently, this event is not consistent with an equal increase in acetate production. In agreement with the hydrogenase model recently proposed for the sister species Thermotoga maritima, this suggests that cellular NADH + ratio has a crucial role on biogas synthesis.
doi_str_mv 10.1016/j.ijhydene.2009.12.044
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746006225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319909019727</els_id><sourcerecordid>746006225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-25dbae2bb6795989f192a1e8a1774e1a27d29a2cc2281c7560928812f24048dc3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqXwF1AWxJRgXxw73kBVoUiVWMpsOc6ldZSPYqeI_ntSWliZ7h2e9073EHLLaMIoEw914urNvsQOE6BUJQwSyvkZmbBcqjjluTwnE5oKGqdMqUtyFUJNKZOUqwmZL_al79fYRS0OpugbF9rIddGwwQi_Bo8tHrJv--3GNRitfvLQr03UodmO_GA6c00uKtMEvDnNKXl_nq9mi3j59vI6e1rGNpV8iCErC4NQFEKqTOWqYgoMw9wwKTkyA7IEZcBagJxZmQmqIM8ZVMApz0ubTsn9ce_W9x87DINuXbDYNKbDfhe05IJSAZCNpDiS1vcheKz01rvW-L1mVB-06Vr_atMHbZqBHrWNxbvTCROsaSpvOuvCXxtAAOeCjdzjkcPx30-HXgfrsLNYOo920GXv_jv1DeLPhp0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746006225</pqid></control><display><type>article</type><title>Hydrogen metabolism in the extreme thermophile Thermotoga neapolitana</title><source>Elsevier ScienceDirect Journals</source><creator>d'Ippolito, Giuliana ; Dipasquale, Laura ; Vella, Filomena Monica ; Romano, Ida ; Gambacorta, Agata ; Cutignano, Adele ; Fontana, Angelo</creator><creatorcontrib>d'Ippolito, Giuliana ; Dipasquale, Laura ; Vella, Filomena Monica ; Romano, Ida ; Gambacorta, Agata ; Cutignano, Adele ; Fontana, Angelo</creatorcontrib><description>Anaerobic growth of Thermotoga neapolitana led maximum to hydrogen yield of 3.85 ± 0.07 mol H 2/mol glucose and production rate of 51 ml/l/h. This productivity is strongly affected by stirring, pH buffering, N 2 sparging and culture/headspace volume ratio. Embden–Meyerhoff pathway is the only glycolytic route in T. neapolitana but, under the conditions used in this study, about 12–15% of the biogas requires consumption of protein source. Reduction of the hydrogen yields below the theoretical 4 mol H 2/mol glucose is mainly due to production of lactate and alanine that affect the availability of pyruvate/NADH for the hydrogenase, as well as to loss of part of glucose by conversion to fructose that is eventually released in the medium. Hydrogen productivity is modulated during the bacterial growth and major biogas synthesis is recorded in the stationary phase in concomitance with reduction of lactate synthesis. Apparently, this event is not consistent with an equal increase in acetate production. In agreement with the hydrogenase model recently proposed for the sister species Thermotoga maritima, this suggests that cellular NADH + ratio has a crucial role on biogas synthesis.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2009.12.044</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Culture ; Energy ; Exact sciences and technology ; Fuels ; Glycolytic pathway ; Hydrogen ; Hydrogen production ; Labelling studies ; Metabolic studies ; Sugar fermentation ; Thermotoga maritima ; Thermotoga neapolitana</subject><ispartof>International journal of hydrogen energy, 2010-03, Vol.35 (6), p.2290-2295</ispartof><rights>2009 Professor T. Nejat Veziroglu</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-25dbae2bb6795989f192a1e8a1774e1a27d29a2cc2281c7560928812f24048dc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360319909019727$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22624461$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>d'Ippolito, Giuliana</creatorcontrib><creatorcontrib>Dipasquale, Laura</creatorcontrib><creatorcontrib>Vella, Filomena Monica</creatorcontrib><creatorcontrib>Romano, Ida</creatorcontrib><creatorcontrib>Gambacorta, Agata</creatorcontrib><creatorcontrib>Cutignano, Adele</creatorcontrib><creatorcontrib>Fontana, Angelo</creatorcontrib><title>Hydrogen metabolism in the extreme thermophile Thermotoga neapolitana</title><title>International journal of hydrogen energy</title><description>Anaerobic growth of Thermotoga neapolitana led maximum to hydrogen yield of 3.85 ± 0.07 mol H 2/mol glucose and production rate of 51 ml/l/h. This productivity is strongly affected by stirring, pH buffering, N 2 sparging and culture/headspace volume ratio. Embden–Meyerhoff pathway is the only glycolytic route in T. neapolitana but, under the conditions used in this study, about 12–15% of the biogas requires consumption of protein source. Reduction of the hydrogen yields below the theoretical 4 mol H 2/mol glucose is mainly due to production of lactate and alanine that affect the availability of pyruvate/NADH for the hydrogenase, as well as to loss of part of glucose by conversion to fructose that is eventually released in the medium. Hydrogen productivity is modulated during the bacterial growth and major biogas synthesis is recorded in the stationary phase in concomitance with reduction of lactate synthesis. Apparently, this event is not consistent with an equal increase in acetate production. In agreement with the hydrogenase model recently proposed for the sister species Thermotoga maritima, this suggests that cellular NADH + ratio has a crucial role on biogas synthesis.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Culture</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Glycolytic pathway</subject><subject>Hydrogen</subject><subject>Hydrogen production</subject><subject>Labelling studies</subject><subject>Metabolic studies</subject><subject>Sugar fermentation</subject><subject>Thermotoga maritima</subject><subject>Thermotoga neapolitana</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqXwF1AWxJRgXxw73kBVoUiVWMpsOc6ldZSPYqeI_ntSWliZ7h2e9073EHLLaMIoEw914urNvsQOE6BUJQwSyvkZmbBcqjjluTwnE5oKGqdMqUtyFUJNKZOUqwmZL_al79fYRS0OpugbF9rIddGwwQi_Bo8tHrJv--3GNRitfvLQr03UodmO_GA6c00uKtMEvDnNKXl_nq9mi3j59vI6e1rGNpV8iCErC4NQFEKqTOWqYgoMw9wwKTkyA7IEZcBagJxZmQmqIM8ZVMApz0ubTsn9ce_W9x87DINuXbDYNKbDfhe05IJSAZCNpDiS1vcheKz01rvW-L1mVB-06Vr_atMHbZqBHrWNxbvTCROsaSpvOuvCXxtAAOeCjdzjkcPx30-HXgfrsLNYOo920GXv_jv1DeLPhp0</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>d'Ippolito, Giuliana</creator><creator>Dipasquale, Laura</creator><creator>Vella, Filomena Monica</creator><creator>Romano, Ida</creator><creator>Gambacorta, Agata</creator><creator>Cutignano, Adele</creator><creator>Fontana, Angelo</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope></search><sort><creationdate>20100301</creationdate><title>Hydrogen metabolism in the extreme thermophile Thermotoga neapolitana</title><author>d'Ippolito, Giuliana ; Dipasquale, Laura ; Vella, Filomena Monica ; Romano, Ida ; Gambacorta, Agata ; Cutignano, Adele ; Fontana, Angelo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-25dbae2bb6795989f192a1e8a1774e1a27d29a2cc2281c7560928812f24048dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Culture</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Glycolytic pathway</topic><topic>Hydrogen</topic><topic>Hydrogen production</topic><topic>Labelling studies</topic><topic>Metabolic studies</topic><topic>Sugar fermentation</topic><topic>Thermotoga maritima</topic><topic>Thermotoga neapolitana</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>d'Ippolito, Giuliana</creatorcontrib><creatorcontrib>Dipasquale, Laura</creatorcontrib><creatorcontrib>Vella, Filomena Monica</creatorcontrib><creatorcontrib>Romano, Ida</creatorcontrib><creatorcontrib>Gambacorta, Agata</creatorcontrib><creatorcontrib>Cutignano, Adele</creatorcontrib><creatorcontrib>Fontana, Angelo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>d'Ippolito, Giuliana</au><au>Dipasquale, Laura</au><au>Vella, Filomena Monica</au><au>Romano, Ida</au><au>Gambacorta, Agata</au><au>Cutignano, Adele</au><au>Fontana, Angelo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen metabolism in the extreme thermophile Thermotoga neapolitana</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>35</volume><issue>6</issue><spage>2290</spage><epage>2295</epage><pages>2290-2295</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>Anaerobic growth of Thermotoga neapolitana led maximum to hydrogen yield of 3.85 ± 0.07 mol H 2/mol glucose and production rate of 51 ml/l/h. This productivity is strongly affected by stirring, pH buffering, N 2 sparging and culture/headspace volume ratio. Embden–Meyerhoff pathway is the only glycolytic route in T. neapolitana but, under the conditions used in this study, about 12–15% of the biogas requires consumption of protein source. Reduction of the hydrogen yields below the theoretical 4 mol H 2/mol glucose is mainly due to production of lactate and alanine that affect the availability of pyruvate/NADH for the hydrogenase, as well as to loss of part of glucose by conversion to fructose that is eventually released in the medium. Hydrogen productivity is modulated during the bacterial growth and major biogas synthesis is recorded in the stationary phase in concomitance with reduction of lactate synthesis. Apparently, this event is not consistent with an equal increase in acetate production. In agreement with the hydrogenase model recently proposed for the sister species Thermotoga maritima, this suggests that cellular NADH + ratio has a crucial role on biogas synthesis.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2009.12.044</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International journal of hydrogen energy, 2010-03, Vol.35 (6), p.2290-2295
issn 0360-3199
1879-3487
language eng
recordid cdi_proquest_miscellaneous_746006225
source Elsevier ScienceDirect Journals
subjects Alternative fuels. Production and utilization
Applied sciences
Culture
Energy
Exact sciences and technology
Fuels
Glycolytic pathway
Hydrogen
Hydrogen production
Labelling studies
Metabolic studies
Sugar fermentation
Thermotoga maritima
Thermotoga neapolitana
title Hydrogen metabolism in the extreme thermophile Thermotoga neapolitana
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20metabolism%20in%20the%20extreme%20thermophile%20Thermotoga%20neapolitana&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=d'Ippolito,%20Giuliana&rft.date=2010-03-01&rft.volume=35&rft.issue=6&rft.spage=2290&rft.epage=2295&rft.pages=2290-2295&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2009.12.044&rft_dat=%3Cproquest_cross%3E746006225%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=746006225&rft_id=info:pmid/&rft_els_id=S0360319909019727&rfr_iscdi=true