Stabilization of bacteriophage during freeze drying

With preliminary clinical trials completed for the treatment of antibiotic resistant infections using bacteriophages, there is a need to develop pharmaceutically acceptable formulations. Lyophilization is an established technique for the storage of bacteriophage, but there is little consensus regard...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics 2010-04, Vol.389 (1), p.168-175
Hauptverfasser: Puapermpoonsiri, U., Ford, S.J., van der Walle, C.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 175
container_issue 1
container_start_page 168
container_title International journal of pharmaceutics
container_volume 389
creator Puapermpoonsiri, U.
Ford, S.J.
van der Walle, C.F.
description With preliminary clinical trials completed for the treatment of antibiotic resistant infections using bacteriophages, there is a need to develop pharmaceutically acceptable formulations. Lyophilization is an established technique for the storage of bacteriophage, but there is little consensus regarding drying cycles, additives and moisture content specific to phage. Here, the addition of sucrose or poly(ethylene glycol) 6000 yielded stable freeze-dried cakes only from high concentrations (0.5 M and 5%, respectively), with addition of bacteriophage otherwise causing collapse. Gelatin, which is added to storage media (a solution of salts), played no role in maintaining bacteriophage stability following lyophilization. A secondary drying cycle was most important for maintaining bacteriophage activity. The addition of high concentrations of PEG 6000 or sucrose generally caused a more rapid fall in bacteriophage stability, over the first 7–14 d, but thereafter residual activities for all phage formulations converged. There was no distinct change in the glass transition temperatures ( T g) measured for the formulations containing the same additive. Imaging of cakes containing fluorescently labeled bacteriophage did not show gross aggregation or phase separation of bacteriophage during lyophilization. However, the moisture content of the cake did correlate with lytic activity, irrespective of the formulation, with a 4–6% moisture content proving optimal. We propose that residual moisture is followed during lyophilization of bacteriophage from minimal concentrations of bulking agent.
doi_str_mv 10.1016/j.ijpharm.2010.01.034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746005984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378517310000682</els_id><sourcerecordid>746005984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-482d6e01d15e6d9bb8f530bc1ec4bc192252afd22a7f8310eb30f051d5b5e89e3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWqs_QelFPG2dJJvd7Emk-AUFD-o5ZJNJTdnu1mQrtL_elFY9eplhwvPOhIeQCwpjCrS4mY_9fPmhw2LMIL0BHQPPD8iAypJnPC-LQzIAXspM0JKfkNMY5wBQMMqPyck2InIhB4S_9rr2jd_o3nftqHOjWpseg-_S8hmO7Cr4djZyAXGTprBO0xk5crqJeL7vQ_L-cP82ecqmL4_Pk7tpZnJW9FkumS0QqKUCC1vVtXSCQ20omjzVijHBtLOM6dJJTgFrDg4EtaIWKCvkQ3K927sM3ecKY68WPhpsGt1it4qqzAsAUcn8f5JzLitWQCLFjjShizGgU8vgFzqsFQW1Favmai9WbS0poCqJTbnL_YVVvUD7m_oxmYCrPaCj0Y0LujU-_nFMVFBCmbjbHYfJ3JfHoKLx2Bq0PqDple38P1_5BsBCmEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733389260</pqid></control><display><type>article</type><title>Stabilization of bacteriophage during freeze drying</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Puapermpoonsiri, U. ; Ford, S.J. ; van der Walle, C.F.</creator><creatorcontrib>Puapermpoonsiri, U. ; Ford, S.J. ; van der Walle, C.F.</creatorcontrib><description>With preliminary clinical trials completed for the treatment of antibiotic resistant infections using bacteriophages, there is a need to develop pharmaceutically acceptable formulations. Lyophilization is an established technique for the storage of bacteriophage, but there is little consensus regarding drying cycles, additives and moisture content specific to phage. Here, the addition of sucrose or poly(ethylene glycol) 6000 yielded stable freeze-dried cakes only from high concentrations (0.5 M and 5%, respectively), with addition of bacteriophage otherwise causing collapse. Gelatin, which is added to storage media (a solution of salts), played no role in maintaining bacteriophage stability following lyophilization. A secondary drying cycle was most important for maintaining bacteriophage activity. The addition of high concentrations of PEG 6000 or sucrose generally caused a more rapid fall in bacteriophage stability, over the first 7–14 d, but thereafter residual activities for all phage formulations converged. There was no distinct change in the glass transition temperatures ( T g) measured for the formulations containing the same additive. Imaging of cakes containing fluorescently labeled bacteriophage did not show gross aggregation or phase separation of bacteriophage during lyophilization. However, the moisture content of the cake did correlate with lytic activity, irrespective of the formulation, with a 4–6% moisture content proving optimal. We propose that residual moisture is followed during lyophilization of bacteriophage from minimal concentrations of bulking agent.</description><identifier>ISSN: 0378-5173</identifier><identifier>EISSN: 1873-3476</identifier><identifier>DOI: 10.1016/j.ijpharm.2010.01.034</identifier><identifier>PMID: 20105458</identifier><identifier>CODEN: IJPHDE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Antibiotics ; Bacteria ; Bacteriophage ; Bacteriophages - chemistry ; Biological and medical sciences ; Chemistry, Pharmaceutical - methods ; Freeze Drying ; Gelatin - chemistry ; General pharmacology ; Lyophilization ; Medical sciences ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments ; Polyethylene Glycols - chemistry ; Pseudomonas ; Stabilizers ; Staphylococcus ; Sucrose - chemistry ; Time Factors ; Transition Temperature</subject><ispartof>International journal of pharmaceutics, 2010-04, Vol.389 (1), p.168-175</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-482d6e01d15e6d9bb8f530bc1ec4bc192252afd22a7f8310eb30f051d5b5e89e3</citedby><cites>FETCH-LOGICAL-c426t-482d6e01d15e6d9bb8f530bc1ec4bc192252afd22a7f8310eb30f051d5b5e89e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijpharm.2010.01.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22590707$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20105458$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Puapermpoonsiri, U.</creatorcontrib><creatorcontrib>Ford, S.J.</creatorcontrib><creatorcontrib>van der Walle, C.F.</creatorcontrib><title>Stabilization of bacteriophage during freeze drying</title><title>International journal of pharmaceutics</title><addtitle>Int J Pharm</addtitle><description>With preliminary clinical trials completed for the treatment of antibiotic resistant infections using bacteriophages, there is a need to develop pharmaceutically acceptable formulations. Lyophilization is an established technique for the storage of bacteriophage, but there is little consensus regarding drying cycles, additives and moisture content specific to phage. Here, the addition of sucrose or poly(ethylene glycol) 6000 yielded stable freeze-dried cakes only from high concentrations (0.5 M and 5%, respectively), with addition of bacteriophage otherwise causing collapse. Gelatin, which is added to storage media (a solution of salts), played no role in maintaining bacteriophage stability following lyophilization. A secondary drying cycle was most important for maintaining bacteriophage activity. The addition of high concentrations of PEG 6000 or sucrose generally caused a more rapid fall in bacteriophage stability, over the first 7–14 d, but thereafter residual activities for all phage formulations converged. There was no distinct change in the glass transition temperatures ( T g) measured for the formulations containing the same additive. Imaging of cakes containing fluorescently labeled bacteriophage did not show gross aggregation or phase separation of bacteriophage during lyophilization. However, the moisture content of the cake did correlate with lytic activity, irrespective of the formulation, with a 4–6% moisture content proving optimal. We propose that residual moisture is followed during lyophilization of bacteriophage from minimal concentrations of bulking agent.</description><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bacteriophage</subject><subject>Bacteriophages - chemistry</subject><subject>Biological and medical sciences</subject><subject>Chemistry, Pharmaceutical - methods</subject><subject>Freeze Drying</subject><subject>Gelatin - chemistry</subject><subject>General pharmacology</subject><subject>Lyophilization</subject><subject>Medical sciences</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Pseudomonas</subject><subject>Stabilizers</subject><subject>Staphylococcus</subject><subject>Sucrose - chemistry</subject><subject>Time Factors</subject><subject>Transition Temperature</subject><issn>0378-5173</issn><issn>1873-3476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LAzEQhoMoWqs_QelFPG2dJJvd7Emk-AUFD-o5ZJNJTdnu1mQrtL_elFY9eplhwvPOhIeQCwpjCrS4mY_9fPmhw2LMIL0BHQPPD8iAypJnPC-LQzIAXspM0JKfkNMY5wBQMMqPyck2InIhB4S_9rr2jd_o3nftqHOjWpseg-_S8hmO7Cr4djZyAXGTprBO0xk5crqJeL7vQ_L-cP82ecqmL4_Pk7tpZnJW9FkumS0QqKUCC1vVtXSCQ20omjzVijHBtLOM6dJJTgFrDg4EtaIWKCvkQ3K927sM3ecKY68WPhpsGt1it4qqzAsAUcn8f5JzLitWQCLFjjShizGgU8vgFzqsFQW1Favmai9WbS0poCqJTbnL_YVVvUD7m_oxmYCrPaCj0Y0LujU-_nFMVFBCmbjbHYfJ3JfHoKLx2Bq0PqDple38P1_5BsBCmEw</recordid><startdate>20100415</startdate><enddate>20100415</enddate><creator>Puapermpoonsiri, U.</creator><creator>Ford, S.J.</creator><creator>van der Walle, C.F.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7T7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope></search><sort><creationdate>20100415</creationdate><title>Stabilization of bacteriophage during freeze drying</title><author>Puapermpoonsiri, U. ; Ford, S.J. ; van der Walle, C.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-482d6e01d15e6d9bb8f530bc1ec4bc192252afd22a7f8310eb30f051d5b5e89e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bacteriophage</topic><topic>Bacteriophages - chemistry</topic><topic>Biological and medical sciences</topic><topic>Chemistry, Pharmaceutical - methods</topic><topic>Freeze Drying</topic><topic>Gelatin - chemistry</topic><topic>General pharmacology</topic><topic>Lyophilization</topic><topic>Medical sciences</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Pseudomonas</topic><topic>Stabilizers</topic><topic>Staphylococcus</topic><topic>Sucrose - chemistry</topic><topic>Time Factors</topic><topic>Transition Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Puapermpoonsiri, U.</creatorcontrib><creatorcontrib>Ford, S.J.</creatorcontrib><creatorcontrib>van der Walle, C.F.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>International journal of pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Puapermpoonsiri, U.</au><au>Ford, S.J.</au><au>van der Walle, C.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilization of bacteriophage during freeze drying</atitle><jtitle>International journal of pharmaceutics</jtitle><addtitle>Int J Pharm</addtitle><date>2010-04-15</date><risdate>2010</risdate><volume>389</volume><issue>1</issue><spage>168</spage><epage>175</epage><pages>168-175</pages><issn>0378-5173</issn><eissn>1873-3476</eissn><coden>IJPHDE</coden><abstract>With preliminary clinical trials completed for the treatment of antibiotic resistant infections using bacteriophages, there is a need to develop pharmaceutically acceptable formulations. Lyophilization is an established technique for the storage of bacteriophage, but there is little consensus regarding drying cycles, additives and moisture content specific to phage. Here, the addition of sucrose or poly(ethylene glycol) 6000 yielded stable freeze-dried cakes only from high concentrations (0.5 M and 5%, respectively), with addition of bacteriophage otherwise causing collapse. Gelatin, which is added to storage media (a solution of salts), played no role in maintaining bacteriophage stability following lyophilization. A secondary drying cycle was most important for maintaining bacteriophage activity. The addition of high concentrations of PEG 6000 or sucrose generally caused a more rapid fall in bacteriophage stability, over the first 7–14 d, but thereafter residual activities for all phage formulations converged. There was no distinct change in the glass transition temperatures ( T g) measured for the formulations containing the same additive. Imaging of cakes containing fluorescently labeled bacteriophage did not show gross aggregation or phase separation of bacteriophage during lyophilization. However, the moisture content of the cake did correlate with lytic activity, irrespective of the formulation, with a 4–6% moisture content proving optimal. We propose that residual moisture is followed during lyophilization of bacteriophage from minimal concentrations of bulking agent.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>20105458</pmid><doi>10.1016/j.ijpharm.2010.01.034</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-5173
ispartof International journal of pharmaceutics, 2010-04, Vol.389 (1), p.168-175
issn 0378-5173
1873-3476
language eng
recordid cdi_proquest_miscellaneous_746005984
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Antibiotics
Bacteria
Bacteriophage
Bacteriophages - chemistry
Biological and medical sciences
Chemistry, Pharmaceutical - methods
Freeze Drying
Gelatin - chemistry
General pharmacology
Lyophilization
Medical sciences
Pharmaceutical technology. Pharmaceutical industry
Pharmacology. Drug treatments
Polyethylene Glycols - chemistry
Pseudomonas
Stabilizers
Staphylococcus
Sucrose - chemistry
Time Factors
Transition Temperature
title Stabilization of bacteriophage during freeze drying
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A37%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilization%20of%20bacteriophage%20during%20freeze%20drying&rft.jtitle=International%20journal%20of%20pharmaceutics&rft.au=Puapermpoonsiri,%20U.&rft.date=2010-04-15&rft.volume=389&rft.issue=1&rft.spage=168&rft.epage=175&rft.pages=168-175&rft.issn=0378-5173&rft.eissn=1873-3476&rft.coden=IJPHDE&rft_id=info:doi/10.1016/j.ijpharm.2010.01.034&rft_dat=%3Cproquest_cross%3E746005984%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733389260&rft_id=info:pmid/20105458&rft_els_id=S0378517310000682&rfr_iscdi=true