Stabilization of bacteriophage during freeze drying
With preliminary clinical trials completed for the treatment of antibiotic resistant infections using bacteriophages, there is a need to develop pharmaceutically acceptable formulations. Lyophilization is an established technique for the storage of bacteriophage, but there is little consensus regard...
Gespeichert in:
Veröffentlicht in: | International journal of pharmaceutics 2010-04, Vol.389 (1), p.168-175 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 175 |
---|---|
container_issue | 1 |
container_start_page | 168 |
container_title | International journal of pharmaceutics |
container_volume | 389 |
creator | Puapermpoonsiri, U. Ford, S.J. van der Walle, C.F. |
description | With preliminary clinical trials completed for the treatment of antibiotic resistant infections using bacteriophages, there is a need to develop pharmaceutically acceptable formulations. Lyophilization is an established technique for the storage of bacteriophage, but there is little consensus regarding drying cycles, additives and moisture content specific to phage. Here, the addition of sucrose or poly(ethylene glycol) 6000 yielded stable freeze-dried cakes only from high concentrations (0.5
M and 5%, respectively), with addition of bacteriophage otherwise causing collapse. Gelatin, which is added to storage media (a solution of salts), played no role in maintaining bacteriophage stability following lyophilization. A secondary drying cycle was most important for maintaining bacteriophage activity. The addition of high concentrations of PEG 6000 or sucrose generally caused a more rapid fall in bacteriophage stability, over the first 7–14
d, but thereafter residual activities for all phage formulations converged. There was no distinct change in the glass transition temperatures (
T
g) measured for the formulations containing the same additive. Imaging of cakes containing fluorescently labeled bacteriophage did not show gross aggregation or phase separation of bacteriophage during lyophilization. However, the moisture content of the cake did correlate with lytic activity, irrespective of the formulation, with a 4–6% moisture content proving optimal. We propose that residual moisture is followed during lyophilization of bacteriophage from minimal concentrations of bulking agent. |
doi_str_mv | 10.1016/j.ijpharm.2010.01.034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746005984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378517310000682</els_id><sourcerecordid>746005984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-482d6e01d15e6d9bb8f530bc1ec4bc192252afd22a7f8310eb30f051d5b5e89e3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWqs_QelFPG2dJJvd7Emk-AUFD-o5ZJNJTdnu1mQrtL_elFY9eplhwvPOhIeQCwpjCrS4mY_9fPmhw2LMIL0BHQPPD8iAypJnPC-LQzIAXspM0JKfkNMY5wBQMMqPyck2InIhB4S_9rr2jd_o3nftqHOjWpseg-_S8hmO7Cr4djZyAXGTprBO0xk5crqJeL7vQ_L-cP82ecqmL4_Pk7tpZnJW9FkumS0QqKUCC1vVtXSCQ20omjzVijHBtLOM6dJJTgFrDg4EtaIWKCvkQ3K927sM3ecKY68WPhpsGt1it4qqzAsAUcn8f5JzLitWQCLFjjShizGgU8vgFzqsFQW1Favmai9WbS0poCqJTbnL_YVVvUD7m_oxmYCrPaCj0Y0LujU-_nFMVFBCmbjbHYfJ3JfHoKLx2Bq0PqDple38P1_5BsBCmEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733389260</pqid></control><display><type>article</type><title>Stabilization of bacteriophage during freeze drying</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Puapermpoonsiri, U. ; Ford, S.J. ; van der Walle, C.F.</creator><creatorcontrib>Puapermpoonsiri, U. ; Ford, S.J. ; van der Walle, C.F.</creatorcontrib><description>With preliminary clinical trials completed for the treatment of antibiotic resistant infections using bacteriophages, there is a need to develop pharmaceutically acceptable formulations. Lyophilization is an established technique for the storage of bacteriophage, but there is little consensus regarding drying cycles, additives and moisture content specific to phage. Here, the addition of sucrose or poly(ethylene glycol) 6000 yielded stable freeze-dried cakes only from high concentrations (0.5
M and 5%, respectively), with addition of bacteriophage otherwise causing collapse. Gelatin, which is added to storage media (a solution of salts), played no role in maintaining bacteriophage stability following lyophilization. A secondary drying cycle was most important for maintaining bacteriophage activity. The addition of high concentrations of PEG 6000 or sucrose generally caused a more rapid fall in bacteriophage stability, over the first 7–14
d, but thereafter residual activities for all phage formulations converged. There was no distinct change in the glass transition temperatures (
T
g) measured for the formulations containing the same additive. Imaging of cakes containing fluorescently labeled bacteriophage did not show gross aggregation or phase separation of bacteriophage during lyophilization. However, the moisture content of the cake did correlate with lytic activity, irrespective of the formulation, with a 4–6% moisture content proving optimal. We propose that residual moisture is followed during lyophilization of bacteriophage from minimal concentrations of bulking agent.</description><identifier>ISSN: 0378-5173</identifier><identifier>EISSN: 1873-3476</identifier><identifier>DOI: 10.1016/j.ijpharm.2010.01.034</identifier><identifier>PMID: 20105458</identifier><identifier>CODEN: IJPHDE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Antibiotics ; Bacteria ; Bacteriophage ; Bacteriophages - chemistry ; Biological and medical sciences ; Chemistry, Pharmaceutical - methods ; Freeze Drying ; Gelatin - chemistry ; General pharmacology ; Lyophilization ; Medical sciences ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments ; Polyethylene Glycols - chemistry ; Pseudomonas ; Stabilizers ; Staphylococcus ; Sucrose - chemistry ; Time Factors ; Transition Temperature</subject><ispartof>International journal of pharmaceutics, 2010-04, Vol.389 (1), p.168-175</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-482d6e01d15e6d9bb8f530bc1ec4bc192252afd22a7f8310eb30f051d5b5e89e3</citedby><cites>FETCH-LOGICAL-c426t-482d6e01d15e6d9bb8f530bc1ec4bc192252afd22a7f8310eb30f051d5b5e89e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijpharm.2010.01.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22590707$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20105458$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Puapermpoonsiri, U.</creatorcontrib><creatorcontrib>Ford, S.J.</creatorcontrib><creatorcontrib>van der Walle, C.F.</creatorcontrib><title>Stabilization of bacteriophage during freeze drying</title><title>International journal of pharmaceutics</title><addtitle>Int J Pharm</addtitle><description>With preliminary clinical trials completed for the treatment of antibiotic resistant infections using bacteriophages, there is a need to develop pharmaceutically acceptable formulations. Lyophilization is an established technique for the storage of bacteriophage, but there is little consensus regarding drying cycles, additives and moisture content specific to phage. Here, the addition of sucrose or poly(ethylene glycol) 6000 yielded stable freeze-dried cakes only from high concentrations (0.5
M and 5%, respectively), with addition of bacteriophage otherwise causing collapse. Gelatin, which is added to storage media (a solution of salts), played no role in maintaining bacteriophage stability following lyophilization. A secondary drying cycle was most important for maintaining bacteriophage activity. The addition of high concentrations of PEG 6000 or sucrose generally caused a more rapid fall in bacteriophage stability, over the first 7–14
d, but thereafter residual activities for all phage formulations converged. There was no distinct change in the glass transition temperatures (
T
g) measured for the formulations containing the same additive. Imaging of cakes containing fluorescently labeled bacteriophage did not show gross aggregation or phase separation of bacteriophage during lyophilization. However, the moisture content of the cake did correlate with lytic activity, irrespective of the formulation, with a 4–6% moisture content proving optimal. We propose that residual moisture is followed during lyophilization of bacteriophage from minimal concentrations of bulking agent.</description><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bacteriophage</subject><subject>Bacteriophages - chemistry</subject><subject>Biological and medical sciences</subject><subject>Chemistry, Pharmaceutical - methods</subject><subject>Freeze Drying</subject><subject>Gelatin - chemistry</subject><subject>General pharmacology</subject><subject>Lyophilization</subject><subject>Medical sciences</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Pseudomonas</subject><subject>Stabilizers</subject><subject>Staphylococcus</subject><subject>Sucrose - chemistry</subject><subject>Time Factors</subject><subject>Transition Temperature</subject><issn>0378-5173</issn><issn>1873-3476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LAzEQhoMoWqs_QelFPG2dJJvd7Emk-AUFD-o5ZJNJTdnu1mQrtL_elFY9eplhwvPOhIeQCwpjCrS4mY_9fPmhw2LMIL0BHQPPD8iAypJnPC-LQzIAXspM0JKfkNMY5wBQMMqPyck2InIhB4S_9rr2jd_o3nftqHOjWpseg-_S8hmO7Cr4djZyAXGTprBO0xk5crqJeL7vQ_L-cP82ecqmL4_Pk7tpZnJW9FkumS0QqKUCC1vVtXSCQ20omjzVijHBtLOM6dJJTgFrDg4EtaIWKCvkQ3K927sM3ecKY68WPhpsGt1it4qqzAsAUcn8f5JzLitWQCLFjjShizGgU8vgFzqsFQW1Favmai9WbS0poCqJTbnL_YVVvUD7m_oxmYCrPaCj0Y0LujU-_nFMVFBCmbjbHYfJ3JfHoKLx2Bq0PqDple38P1_5BsBCmEw</recordid><startdate>20100415</startdate><enddate>20100415</enddate><creator>Puapermpoonsiri, U.</creator><creator>Ford, S.J.</creator><creator>van der Walle, C.F.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7T7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope></search><sort><creationdate>20100415</creationdate><title>Stabilization of bacteriophage during freeze drying</title><author>Puapermpoonsiri, U. ; Ford, S.J. ; van der Walle, C.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-482d6e01d15e6d9bb8f530bc1ec4bc192252afd22a7f8310eb30f051d5b5e89e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bacteriophage</topic><topic>Bacteriophages - chemistry</topic><topic>Biological and medical sciences</topic><topic>Chemistry, Pharmaceutical - methods</topic><topic>Freeze Drying</topic><topic>Gelatin - chemistry</topic><topic>General pharmacology</topic><topic>Lyophilization</topic><topic>Medical sciences</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Pseudomonas</topic><topic>Stabilizers</topic><topic>Staphylococcus</topic><topic>Sucrose - chemistry</topic><topic>Time Factors</topic><topic>Transition Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Puapermpoonsiri, U.</creatorcontrib><creatorcontrib>Ford, S.J.</creatorcontrib><creatorcontrib>van der Walle, C.F.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>International journal of pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Puapermpoonsiri, U.</au><au>Ford, S.J.</au><au>van der Walle, C.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilization of bacteriophage during freeze drying</atitle><jtitle>International journal of pharmaceutics</jtitle><addtitle>Int J Pharm</addtitle><date>2010-04-15</date><risdate>2010</risdate><volume>389</volume><issue>1</issue><spage>168</spage><epage>175</epage><pages>168-175</pages><issn>0378-5173</issn><eissn>1873-3476</eissn><coden>IJPHDE</coden><abstract>With preliminary clinical trials completed for the treatment of antibiotic resistant infections using bacteriophages, there is a need to develop pharmaceutically acceptable formulations. Lyophilization is an established technique for the storage of bacteriophage, but there is little consensus regarding drying cycles, additives and moisture content specific to phage. Here, the addition of sucrose or poly(ethylene glycol) 6000 yielded stable freeze-dried cakes only from high concentrations (0.5
M and 5%, respectively), with addition of bacteriophage otherwise causing collapse. Gelatin, which is added to storage media (a solution of salts), played no role in maintaining bacteriophage stability following lyophilization. A secondary drying cycle was most important for maintaining bacteriophage activity. The addition of high concentrations of PEG 6000 or sucrose generally caused a more rapid fall in bacteriophage stability, over the first 7–14
d, but thereafter residual activities for all phage formulations converged. There was no distinct change in the glass transition temperatures (
T
g) measured for the formulations containing the same additive. Imaging of cakes containing fluorescently labeled bacteriophage did not show gross aggregation or phase separation of bacteriophage during lyophilization. However, the moisture content of the cake did correlate with lytic activity, irrespective of the formulation, with a 4–6% moisture content proving optimal. We propose that residual moisture is followed during lyophilization of bacteriophage from minimal concentrations of bulking agent.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>20105458</pmid><doi>10.1016/j.ijpharm.2010.01.034</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-5173 |
ispartof | International journal of pharmaceutics, 2010-04, Vol.389 (1), p.168-175 |
issn | 0378-5173 1873-3476 |
language | eng |
recordid | cdi_proquest_miscellaneous_746005984 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Antibiotics Bacteria Bacteriophage Bacteriophages - chemistry Biological and medical sciences Chemistry, Pharmaceutical - methods Freeze Drying Gelatin - chemistry General pharmacology Lyophilization Medical sciences Pharmaceutical technology. Pharmaceutical industry Pharmacology. Drug treatments Polyethylene Glycols - chemistry Pseudomonas Stabilizers Staphylococcus Sucrose - chemistry Time Factors Transition Temperature |
title | Stabilization of bacteriophage during freeze drying |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A37%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilization%20of%20bacteriophage%20during%20freeze%20drying&rft.jtitle=International%20journal%20of%20pharmaceutics&rft.au=Puapermpoonsiri,%20U.&rft.date=2010-04-15&rft.volume=389&rft.issue=1&rft.spage=168&rft.epage=175&rft.pages=168-175&rft.issn=0378-5173&rft.eissn=1873-3476&rft.coden=IJPHDE&rft_id=info:doi/10.1016/j.ijpharm.2010.01.034&rft_dat=%3Cproquest_cross%3E746005984%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733389260&rft_id=info:pmid/20105458&rft_els_id=S0378517310000682&rfr_iscdi=true |