GTPase Mechanisms and Functions of Translation Factors on the Ribosome

The elongation factors (EF) Tu and G and initiation factor 2 (IF2) from bacteria are multidomain GTPases with essential functions in the elongation and initiation phases of translation. They bind to the same site on the ribosome where their low intrinsic GTPase activities are strongly stimulated. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological chemistry 2000-06, Vol.381 (5-6), p.377-387
Hauptverfasser: Rodnina, M.V., Stark, H., Savelsbergh, A., Wieden, H.-J., Mohr, D., Matassova, N.B., Peske, F., Daviter, T., Gualerzi, C.O., Wintermeyer, W.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 387
container_issue 5-6
container_start_page 377
container_title Biological chemistry
container_volume 381
creator Rodnina, M.V.
Stark, H.
Savelsbergh, A.
Wieden, H.-J.
Mohr, D.
Matassova, N.B.
Peske, F.
Daviter, T.
Gualerzi, C.O.
Wintermeyer, W.
description The elongation factors (EF) Tu and G and initiation factor 2 (IF2) from bacteria are multidomain GTPases with essential functions in the elongation and initiation phases of translation. They bind to the same site on the ribosome where their low intrinsic GTPase activities are strongly stimulated. The factors differ fundamentally from each other, and from the majority of GTPases, in the mechanisms of GTPase control, the timing of Pi release, and the functional role of GTP hydrolysis. EF-Tu·GTP forms a ternary complex with aminoacyl-tRNA, which binds to the ribosome. Only when a matching codon is recognized, the GTPase of EF-Tu is stimulated, rapid GTP hydrolysis and Pi release take place, EF-Tu rearranges to the GDP form, and aminoacyl-tRNA is released into the peptidyltransferase center. In contrast, EF-G hydrolyzes GTP immediately upon binding to the ribosome, stimulated by ribosomal protein L7/12. Subsequent translocation is driven by the slow dissociation of Pi, suggesting a mechano-chemical function of EF-G. Accordingly, different conformations of EF-G on the ribosome are revealed by cryo-electron microscopy. GTP hydrolysis by IF2 is triggered upon formation of the 70S initiation complex, and the dissociation of Pi and/or IF2 follows a rearrangement of the ribosome into the elongation-competent state.
doi_str_mv 10.1515/BC.2000.050
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746004000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>746004000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-12090cece8a63c5aad5aa712e6f718db3a561e90943c5fa47f356e70bbb4da303</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhnMAiTE48Qdy44A6nCX92JFVdICGYKicIzd1tULbjKST4N-TaYiDZdnvI0t-GLsSMBOxiG-X-WwOADOI4YRNhJIiSlIJZ-zc-48QZKDkhBWr8hU98WcyWxxa33uOQ82L_WDG1g6e24aXDgff4WHmBZrRurAe-Lgl_tZW1tueLthpg52ny78-Ze_FfZk_ROuX1WN-t46MBDFGYg4LMGQow0SaGLEOlYo5JU0qsrqSGCeCFrBQIW1QpY2ME0qhqipVowQ5ZdfHuztnv_bkR9233lDX4UB273WqEgAVvgvkzZE0znrvqNE71_bofrQAfRCkl7k-CNJBUKCjI936kb7_UXSfOkhLY70plYbNOsufVqXeyF8W0GjY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746004000</pqid></control><display><type>article</type><title>GTPase Mechanisms and Functions of Translation Factors on the Ribosome</title><source>De Gruyter journals</source><creator>Rodnina, M.V. ; Stark, H. ; Savelsbergh, A. ; Wieden, H.-J. ; Mohr, D. ; Matassova, N.B. ; Peske, F. ; Daviter, T. ; Gualerzi, C.O. ; Wintermeyer, W.</creator><creatorcontrib>Rodnina, M.V. ; Stark, H. ; Savelsbergh, A. ; Wieden, H.-J. ; Mohr, D. ; Matassova, N.B. ; Peske, F. ; Daviter, T. ; Gualerzi, C.O. ; Wintermeyer, W.</creatorcontrib><description>The elongation factors (EF) Tu and G and initiation factor 2 (IF2) from bacteria are multidomain GTPases with essential functions in the elongation and initiation phases of translation. They bind to the same site on the ribosome where their low intrinsic GTPase activities are strongly stimulated. The factors differ fundamentally from each other, and from the majority of GTPases, in the mechanisms of GTPase control, the timing of Pi release, and the functional role of GTP hydrolysis. EF-Tu·GTP forms a ternary complex with aminoacyl-tRNA, which binds to the ribosome. Only when a matching codon is recognized, the GTPase of EF-Tu is stimulated, rapid GTP hydrolysis and Pi release take place, EF-Tu rearranges to the GDP form, and aminoacyl-tRNA is released into the peptidyltransferase center. In contrast, EF-G hydrolyzes GTP immediately upon binding to the ribosome, stimulated by ribosomal protein L7/12. Subsequent translocation is driven by the slow dissociation of Pi, suggesting a mechano-chemical function of EF-G. Accordingly, different conformations of EF-G on the ribosome are revealed by cryo-electron microscopy. GTP hydrolysis by IF2 is triggered upon formation of the 70S initiation complex, and the dissociation of Pi and/or IF2 follows a rearrangement of the ribosome into the elongation-competent state.</description><identifier>ISSN: 1431-6730</identifier><identifier>DOI: 10.1515/BC.2000.050</identifier><language>eng</language><publisher>Walter de Gruyter</publisher><ispartof>Biological chemistry, 2000-06, Vol.381 (5-6), p.377-387</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-12090cece8a63c5aad5aa712e6f718db3a561e90943c5fa47f356e70bbb4da303</citedby><cites>FETCH-LOGICAL-c301t-12090cece8a63c5aad5aa712e6f718db3a561e90943c5fa47f356e70bbb4da303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Rodnina, M.V.</creatorcontrib><creatorcontrib>Stark, H.</creatorcontrib><creatorcontrib>Savelsbergh, A.</creatorcontrib><creatorcontrib>Wieden, H.-J.</creatorcontrib><creatorcontrib>Mohr, D.</creatorcontrib><creatorcontrib>Matassova, N.B.</creatorcontrib><creatorcontrib>Peske, F.</creatorcontrib><creatorcontrib>Daviter, T.</creatorcontrib><creatorcontrib>Gualerzi, C.O.</creatorcontrib><creatorcontrib>Wintermeyer, W.</creatorcontrib><title>GTPase Mechanisms and Functions of Translation Factors on the Ribosome</title><title>Biological chemistry</title><addtitle>Biological Chemistry</addtitle><description>The elongation factors (EF) Tu and G and initiation factor 2 (IF2) from bacteria are multidomain GTPases with essential functions in the elongation and initiation phases of translation. They bind to the same site on the ribosome where their low intrinsic GTPase activities are strongly stimulated. The factors differ fundamentally from each other, and from the majority of GTPases, in the mechanisms of GTPase control, the timing of Pi release, and the functional role of GTP hydrolysis. EF-Tu·GTP forms a ternary complex with aminoacyl-tRNA, which binds to the ribosome. Only when a matching codon is recognized, the GTPase of EF-Tu is stimulated, rapid GTP hydrolysis and Pi release take place, EF-Tu rearranges to the GDP form, and aminoacyl-tRNA is released into the peptidyltransferase center. In contrast, EF-G hydrolyzes GTP immediately upon binding to the ribosome, stimulated by ribosomal protein L7/12. Subsequent translocation is driven by the slow dissociation of Pi, suggesting a mechano-chemical function of EF-G. Accordingly, different conformations of EF-G on the ribosome are revealed by cryo-electron microscopy. GTP hydrolysis by IF2 is triggered upon formation of the 70S initiation complex, and the dissociation of Pi and/or IF2 follows a rearrangement of the ribosome into the elongation-competent state.</description><issn>1431-6730</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PwzAMhnMAiTE48Qdy44A6nCX92JFVdICGYKicIzd1tULbjKST4N-TaYiDZdnvI0t-GLsSMBOxiG-X-WwOADOI4YRNhJIiSlIJZ-zc-48QZKDkhBWr8hU98WcyWxxa33uOQ82L_WDG1g6e24aXDgff4WHmBZrRurAe-Lgl_tZW1tueLthpg52ny78-Ze_FfZk_ROuX1WN-t46MBDFGYg4LMGQow0SaGLEOlYo5JU0qsrqSGCeCFrBQIW1QpY2ME0qhqipVowQ5ZdfHuztnv_bkR9233lDX4UB273WqEgAVvgvkzZE0znrvqNE71_bofrQAfRCkl7k-CNJBUKCjI936kb7_UXSfOkhLY70plYbNOsufVqXeyF8W0GjY</recordid><startdate>20000621</startdate><enddate>20000621</enddate><creator>Rodnina, M.V.</creator><creator>Stark, H.</creator><creator>Savelsbergh, A.</creator><creator>Wieden, H.-J.</creator><creator>Mohr, D.</creator><creator>Matassova, N.B.</creator><creator>Peske, F.</creator><creator>Daviter, T.</creator><creator>Gualerzi, C.O.</creator><creator>Wintermeyer, W.</creator><general>Walter de Gruyter</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>C1K</scope></search><sort><creationdate>20000621</creationdate><title>GTPase Mechanisms and Functions of Translation Factors on the Ribosome</title><author>Rodnina, M.V. ; Stark, H. ; Savelsbergh, A. ; Wieden, H.-J. ; Mohr, D. ; Matassova, N.B. ; Peske, F. ; Daviter, T. ; Gualerzi, C.O. ; Wintermeyer, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-12090cece8a63c5aad5aa712e6f718db3a561e90943c5fa47f356e70bbb4da303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodnina, M.V.</creatorcontrib><creatorcontrib>Stark, H.</creatorcontrib><creatorcontrib>Savelsbergh, A.</creatorcontrib><creatorcontrib>Wieden, H.-J.</creatorcontrib><creatorcontrib>Mohr, D.</creatorcontrib><creatorcontrib>Matassova, N.B.</creatorcontrib><creatorcontrib>Peske, F.</creatorcontrib><creatorcontrib>Daviter, T.</creatorcontrib><creatorcontrib>Gualerzi, C.O.</creatorcontrib><creatorcontrib>Wintermeyer, W.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodnina, M.V.</au><au>Stark, H.</au><au>Savelsbergh, A.</au><au>Wieden, H.-J.</au><au>Mohr, D.</au><au>Matassova, N.B.</au><au>Peske, F.</au><au>Daviter, T.</au><au>Gualerzi, C.O.</au><au>Wintermeyer, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GTPase Mechanisms and Functions of Translation Factors on the Ribosome</atitle><jtitle>Biological chemistry</jtitle><addtitle>Biological Chemistry</addtitle><date>2000-06-21</date><risdate>2000</risdate><volume>381</volume><issue>5-6</issue><spage>377</spage><epage>387</epage><pages>377-387</pages><issn>1431-6730</issn><abstract>The elongation factors (EF) Tu and G and initiation factor 2 (IF2) from bacteria are multidomain GTPases with essential functions in the elongation and initiation phases of translation. They bind to the same site on the ribosome where their low intrinsic GTPase activities are strongly stimulated. The factors differ fundamentally from each other, and from the majority of GTPases, in the mechanisms of GTPase control, the timing of Pi release, and the functional role of GTP hydrolysis. EF-Tu·GTP forms a ternary complex with aminoacyl-tRNA, which binds to the ribosome. Only when a matching codon is recognized, the GTPase of EF-Tu is stimulated, rapid GTP hydrolysis and Pi release take place, EF-Tu rearranges to the GDP form, and aminoacyl-tRNA is released into the peptidyltransferase center. In contrast, EF-G hydrolyzes GTP immediately upon binding to the ribosome, stimulated by ribosomal protein L7/12. Subsequent translocation is driven by the slow dissociation of Pi, suggesting a mechano-chemical function of EF-G. Accordingly, different conformations of EF-G on the ribosome are revealed by cryo-electron microscopy. GTP hydrolysis by IF2 is triggered upon formation of the 70S initiation complex, and the dissociation of Pi and/or IF2 follows a rearrangement of the ribosome into the elongation-competent state.</abstract><pub>Walter de Gruyter</pub><doi>10.1515/BC.2000.050</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1431-6730
ispartof Biological chemistry, 2000-06, Vol.381 (5-6), p.377-387
issn 1431-6730
language eng
recordid cdi_proquest_miscellaneous_746004000
source De Gruyter journals
title GTPase Mechanisms and Functions of Translation Factors on the Ribosome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A19%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GTPase%20Mechanisms%20and%20Functions%20of%20Translation%20Factors%20on%20the%20Ribosome&rft.jtitle=Biological%20chemistry&rft.au=Rodnina,%20M.V.&rft.date=2000-06-21&rft.volume=381&rft.issue=5-6&rft.spage=377&rft.epage=387&rft.pages=377-387&rft.issn=1431-6730&rft_id=info:doi/10.1515/BC.2000.050&rft_dat=%3Cproquest_cross%3E746004000%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=746004000&rft_id=info:pmid/&rfr_iscdi=true