Transitions in insect respiratory patterns are controlled by changes in metabolic rate

We examined the respiratory patterns of Rhodnius prolixus and Gromphadorhina portentosa as metabolic rates varied with temperature to determine whether insects transition from discontinuous (DGC), cyclical and continuous respiration as a response to increasing aerobic demand. Using flow through resp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of insect physiology 2010-05, Vol.56 (5), p.522-528
Hauptverfasser: Contreras, H.L., Bradley, T.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 528
container_issue 5
container_start_page 522
container_title Journal of insect physiology
container_volume 56
creator Contreras, H.L.
Bradley, T.J.
description We examined the respiratory patterns of Rhodnius prolixus and Gromphadorhina portentosa as metabolic rates varied with temperature to determine whether insects transition from discontinuous (DGC), cyclical and continuous respiration as a response to increasing aerobic demand. Using flow through respirometry we: (1) determined the effects of temperature on metabolic rate; (2) objectively defined periods of spiracular closure; (3) observed whether there was a correlation between metabolic rate and length of spiracular closure. At low temperatures both species exhibit lengthy periods of spiracular closure reflecting a discontinuous respiratory pattern. As metabolic rate increased, periods of spiracular closure decreased and insects displayed a more cyclical pattern of respiration. As metabolic rates increased even further under the highest experimental temperatures, periods of spiracular closure decreased even more and a continuous respiratory pattern was employed by both species. Our results suggest that the three described respiratory patterns in insects are not distinct but are instead a continuum of respiratory responses driven by the metabolic demand experienced by the insect.
doi_str_mv 10.1016/j.jinsphys.2009.05.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746003646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022191009002297</els_id><sourcerecordid>746003646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-6f506f5c2d0565793278dada2dcd888a6db4174ba318199cac28679f2378a8203</originalsourceid><addsrcrecordid>eNqFkU1v3CAQhlHVqtmm_Qupbz3ZHcBguLWK-iVF6qFJrwjDOGHlNS6wkfbfl81u1WMkEId5Xmb0DCFXFDoKVH7cdtuw5PXhkDsGoDsQHVD1gmyoGnRLJaUvyQaAsZZqChfkTc5bABBSidfkgmrBuBZiQ37fJrvkUEJcchOWejK60iTMa0i2xHRoVlsKplq2CRsXl5LiPKNvxkPjHuxyj0_BHRY7xjm4psbwLXk12Tnju_N7Se6-frm9_t7e_Pz24_rzTet6xksrJwH1OubrZGLQnA3KW2-Zd14pZaUfezr0o-VUUa2ddUzJQU-MD8oqBvySfDj9u6b4Z4-5mF3IDufZLhj32Qy9BOCyl8-TnAsNehCVlCfSpZhzwsmsKexsOhgK5ijfbM0_-eYo34AwVX4NXp1b7Mcd-v-xs-0KvD8Bk43G3qeQzd0vBpQf01w-9f50IrBKewyYTHYBF4c-pLoX42N4boq__dujDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733590975</pqid></control><display><type>article</type><title>Transitions in insect respiratory patterns are controlled by changes in metabolic rate</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Contreras, H.L. ; Bradley, T.J.</creator><creatorcontrib>Contreras, H.L. ; Bradley, T.J.</creatorcontrib><description>We examined the respiratory patterns of Rhodnius prolixus and Gromphadorhina portentosa as metabolic rates varied with temperature to determine whether insects transition from discontinuous (DGC), cyclical and continuous respiration as a response to increasing aerobic demand. Using flow through respirometry we: (1) determined the effects of temperature on metabolic rate; (2) objectively defined periods of spiracular closure; (3) observed whether there was a correlation between metabolic rate and length of spiracular closure. At low temperatures both species exhibit lengthy periods of spiracular closure reflecting a discontinuous respiratory pattern. As metabolic rate increased, periods of spiracular closure decreased and insects displayed a more cyclical pattern of respiration. As metabolic rates increased even further under the highest experimental temperatures, periods of spiracular closure decreased even more and a continuous respiratory pattern was employed by both species. Our results suggest that the three described respiratory patterns in insects are not distinct but are instead a continuum of respiratory responses driven by the metabolic demand experienced by the insect.</description><identifier>ISSN: 0022-1910</identifier><identifier>EISSN: 1879-1611</identifier><identifier>DOI: 10.1016/j.jinsphys.2009.05.018</identifier><identifier>PMID: 19523955</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>aerobic conditions ; ambient temperature ; Animal Structures - physiology ; Animals ; biochemical mechanisms ; breathing ; Carbon Dioxide - metabolism ; Cockroaches - physiology ; cyclic gas exchange ; DGC ; discontinuous gas exchange ; energy metabolism ; Energy Metabolism - physiology ; energy requirements ; flow ; gas exchange ; Gromphadorhina portentosa ; homeostasis ; insect physiology ; Insect respiration ; insects ; Metabolic rate ; Metabolism ; oxygen requirement ; physical activity ; physiological response ; Respiratory pattern ; Respiratory Physiological Phenomena ; Rhodnius - physiology ; Rhodnius prolixus ; spiracles ; Temperature</subject><ispartof>Journal of insect physiology, 2010-05, Vol.56 (5), p.522-528</ispartof><rights>2009</rights><rights>Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-6f506f5c2d0565793278dada2dcd888a6db4174ba318199cac28679f2378a8203</citedby><cites>FETCH-LOGICAL-c423t-6f506f5c2d0565793278dada2dcd888a6db4174ba318199cac28679f2378a8203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jinsphys.2009.05.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19523955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Contreras, H.L.</creatorcontrib><creatorcontrib>Bradley, T.J.</creatorcontrib><title>Transitions in insect respiratory patterns are controlled by changes in metabolic rate</title><title>Journal of insect physiology</title><addtitle>J Insect Physiol</addtitle><description>We examined the respiratory patterns of Rhodnius prolixus and Gromphadorhina portentosa as metabolic rates varied with temperature to determine whether insects transition from discontinuous (DGC), cyclical and continuous respiration as a response to increasing aerobic demand. Using flow through respirometry we: (1) determined the effects of temperature on metabolic rate; (2) objectively defined periods of spiracular closure; (3) observed whether there was a correlation between metabolic rate and length of spiracular closure. At low temperatures both species exhibit lengthy periods of spiracular closure reflecting a discontinuous respiratory pattern. As metabolic rate increased, periods of spiracular closure decreased and insects displayed a more cyclical pattern of respiration. As metabolic rates increased even further under the highest experimental temperatures, periods of spiracular closure decreased even more and a continuous respiratory pattern was employed by both species. Our results suggest that the three described respiratory patterns in insects are not distinct but are instead a continuum of respiratory responses driven by the metabolic demand experienced by the insect.</description><subject>aerobic conditions</subject><subject>ambient temperature</subject><subject>Animal Structures - physiology</subject><subject>Animals</subject><subject>biochemical mechanisms</subject><subject>breathing</subject><subject>Carbon Dioxide - metabolism</subject><subject>Cockroaches - physiology</subject><subject>cyclic gas exchange</subject><subject>DGC</subject><subject>discontinuous gas exchange</subject><subject>energy metabolism</subject><subject>Energy Metabolism - physiology</subject><subject>energy requirements</subject><subject>flow</subject><subject>gas exchange</subject><subject>Gromphadorhina portentosa</subject><subject>homeostasis</subject><subject>insect physiology</subject><subject>Insect respiration</subject><subject>insects</subject><subject>Metabolic rate</subject><subject>Metabolism</subject><subject>oxygen requirement</subject><subject>physical activity</subject><subject>physiological response</subject><subject>Respiratory pattern</subject><subject>Respiratory Physiological Phenomena</subject><subject>Rhodnius - physiology</subject><subject>Rhodnius prolixus</subject><subject>spiracles</subject><subject>Temperature</subject><issn>0022-1910</issn><issn>1879-1611</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v3CAQhlHVqtmm_Qupbz3ZHcBguLWK-iVF6qFJrwjDOGHlNS6wkfbfl81u1WMkEId5Xmb0DCFXFDoKVH7cdtuw5PXhkDsGoDsQHVD1gmyoGnRLJaUvyQaAsZZqChfkTc5bABBSidfkgmrBuBZiQ37fJrvkUEJcchOWejK60iTMa0i2xHRoVlsKplq2CRsXl5LiPKNvxkPjHuxyj0_BHRY7xjm4psbwLXk12Tnju_N7Se6-frm9_t7e_Pz24_rzTet6xksrJwH1OubrZGLQnA3KW2-Zd14pZaUfezr0o-VUUa2ddUzJQU-MD8oqBvySfDj9u6b4Z4-5mF3IDufZLhj32Qy9BOCyl8-TnAsNehCVlCfSpZhzwsmsKexsOhgK5ijfbM0_-eYo34AwVX4NXp1b7Mcd-v-xs-0KvD8Bk43G3qeQzd0vBpQf01w-9f50IrBKewyYTHYBF4c-pLoX42N4boq__dujDg</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Contreras, H.L.</creator><creator>Bradley, T.J.</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SS</scope></search><sort><creationdate>20100501</creationdate><title>Transitions in insect respiratory patterns are controlled by changes in metabolic rate</title><author>Contreras, H.L. ; Bradley, T.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-6f506f5c2d0565793278dada2dcd888a6db4174ba318199cac28679f2378a8203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>aerobic conditions</topic><topic>ambient temperature</topic><topic>Animal Structures - physiology</topic><topic>Animals</topic><topic>biochemical mechanisms</topic><topic>breathing</topic><topic>Carbon Dioxide - metabolism</topic><topic>Cockroaches - physiology</topic><topic>cyclic gas exchange</topic><topic>DGC</topic><topic>discontinuous gas exchange</topic><topic>energy metabolism</topic><topic>Energy Metabolism - physiology</topic><topic>energy requirements</topic><topic>flow</topic><topic>gas exchange</topic><topic>Gromphadorhina portentosa</topic><topic>homeostasis</topic><topic>insect physiology</topic><topic>Insect respiration</topic><topic>insects</topic><topic>Metabolic rate</topic><topic>Metabolism</topic><topic>oxygen requirement</topic><topic>physical activity</topic><topic>physiological response</topic><topic>Respiratory pattern</topic><topic>Respiratory Physiological Phenomena</topic><topic>Rhodnius - physiology</topic><topic>Rhodnius prolixus</topic><topic>spiracles</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Contreras, H.L.</creatorcontrib><creatorcontrib>Bradley, T.J.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Entomology Abstracts (Full archive)</collection><jtitle>Journal of insect physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Contreras, H.L.</au><au>Bradley, T.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transitions in insect respiratory patterns are controlled by changes in metabolic rate</atitle><jtitle>Journal of insect physiology</jtitle><addtitle>J Insect Physiol</addtitle><date>2010-05-01</date><risdate>2010</risdate><volume>56</volume><issue>5</issue><spage>522</spage><epage>528</epage><pages>522-528</pages><issn>0022-1910</issn><eissn>1879-1611</eissn><abstract>We examined the respiratory patterns of Rhodnius prolixus and Gromphadorhina portentosa as metabolic rates varied with temperature to determine whether insects transition from discontinuous (DGC), cyclical and continuous respiration as a response to increasing aerobic demand. Using flow through respirometry we: (1) determined the effects of temperature on metabolic rate; (2) objectively defined periods of spiracular closure; (3) observed whether there was a correlation between metabolic rate and length of spiracular closure. At low temperatures both species exhibit lengthy periods of spiracular closure reflecting a discontinuous respiratory pattern. As metabolic rate increased, periods of spiracular closure decreased and insects displayed a more cyclical pattern of respiration. As metabolic rates increased even further under the highest experimental temperatures, periods of spiracular closure decreased even more and a continuous respiratory pattern was employed by both species. Our results suggest that the three described respiratory patterns in insects are not distinct but are instead a continuum of respiratory responses driven by the metabolic demand experienced by the insect.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>19523955</pmid><doi>10.1016/j.jinsphys.2009.05.018</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1910
ispartof Journal of insect physiology, 2010-05, Vol.56 (5), p.522-528
issn 0022-1910
1879-1611
language eng
recordid cdi_proquest_miscellaneous_746003646
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects aerobic conditions
ambient temperature
Animal Structures - physiology
Animals
biochemical mechanisms
breathing
Carbon Dioxide - metabolism
Cockroaches - physiology
cyclic gas exchange
DGC
discontinuous gas exchange
energy metabolism
Energy Metabolism - physiology
energy requirements
flow
gas exchange
Gromphadorhina portentosa
homeostasis
insect physiology
Insect respiration
insects
Metabolic rate
Metabolism
oxygen requirement
physical activity
physiological response
Respiratory pattern
Respiratory Physiological Phenomena
Rhodnius - physiology
Rhodnius prolixus
spiracles
Temperature
title Transitions in insect respiratory patterns are controlled by changes in metabolic rate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A43%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transitions%20in%20insect%20respiratory%20patterns%20are%20controlled%20by%20changes%20in%20metabolic%20rate&rft.jtitle=Journal%20of%20insect%20physiology&rft.au=Contreras,%20H.L.&rft.date=2010-05-01&rft.volume=56&rft.issue=5&rft.spage=522&rft.epage=528&rft.pages=522-528&rft.issn=0022-1910&rft.eissn=1879-1611&rft_id=info:doi/10.1016/j.jinsphys.2009.05.018&rft_dat=%3Cproquest_cross%3E746003646%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733590975&rft_id=info:pmid/19523955&rft_els_id=S0022191009002297&rfr_iscdi=true