Transitions in insect respiratory patterns are controlled by changes in metabolic rate
We examined the respiratory patterns of Rhodnius prolixus and Gromphadorhina portentosa as metabolic rates varied with temperature to determine whether insects transition from discontinuous (DGC), cyclical and continuous respiration as a response to increasing aerobic demand. Using flow through resp...
Gespeichert in:
Veröffentlicht in: | Journal of insect physiology 2010-05, Vol.56 (5), p.522-528 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 528 |
---|---|
container_issue | 5 |
container_start_page | 522 |
container_title | Journal of insect physiology |
container_volume | 56 |
creator | Contreras, H.L. Bradley, T.J. |
description | We examined the respiratory patterns of Rhodnius prolixus and Gromphadorhina portentosa as metabolic rates varied with temperature to determine whether insects transition from discontinuous (DGC), cyclical and continuous respiration as a response to increasing aerobic demand. Using flow through respirometry we: (1) determined the effects of temperature on metabolic rate; (2) objectively defined periods of spiracular closure; (3) observed whether there was a correlation between metabolic rate and length of spiracular closure. At low temperatures both species exhibit lengthy periods of spiracular closure reflecting a discontinuous respiratory pattern. As metabolic rate increased, periods of spiracular closure decreased and insects displayed a more cyclical pattern of respiration. As metabolic rates increased even further under the highest experimental temperatures, periods of spiracular closure decreased even more and a continuous respiratory pattern was employed by both species. Our results suggest that the three described respiratory patterns in insects are not distinct but are instead a continuum of respiratory responses driven by the metabolic demand experienced by the insect. |
doi_str_mv | 10.1016/j.jinsphys.2009.05.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746003646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022191009002297</els_id><sourcerecordid>746003646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-6f506f5c2d0565793278dada2dcd888a6db4174ba318199cac28679f2378a8203</originalsourceid><addsrcrecordid>eNqFkU1v3CAQhlHVqtmm_Qupbz3ZHcBguLWK-iVF6qFJrwjDOGHlNS6wkfbfl81u1WMkEId5Xmb0DCFXFDoKVH7cdtuw5PXhkDsGoDsQHVD1gmyoGnRLJaUvyQaAsZZqChfkTc5bABBSidfkgmrBuBZiQ37fJrvkUEJcchOWejK60iTMa0i2xHRoVlsKplq2CRsXl5LiPKNvxkPjHuxyj0_BHRY7xjm4psbwLXk12Tnju_N7Se6-frm9_t7e_Pz24_rzTet6xksrJwH1OubrZGLQnA3KW2-Zd14pZaUfezr0o-VUUa2ddUzJQU-MD8oqBvySfDj9u6b4Z4-5mF3IDufZLhj32Qy9BOCyl8-TnAsNehCVlCfSpZhzwsmsKexsOhgK5ijfbM0_-eYo34AwVX4NXp1b7Mcd-v-xs-0KvD8Bk43G3qeQzd0vBpQf01w-9f50IrBKewyYTHYBF4c-pLoX42N4boq__dujDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733590975</pqid></control><display><type>article</type><title>Transitions in insect respiratory patterns are controlled by changes in metabolic rate</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Contreras, H.L. ; Bradley, T.J.</creator><creatorcontrib>Contreras, H.L. ; Bradley, T.J.</creatorcontrib><description>We examined the respiratory patterns of Rhodnius prolixus and Gromphadorhina portentosa as metabolic rates varied with temperature to determine whether insects transition from discontinuous (DGC), cyclical and continuous respiration as a response to increasing aerobic demand. Using flow through respirometry we: (1) determined the effects of temperature on metabolic rate; (2) objectively defined periods of spiracular closure; (3) observed whether there was a correlation between metabolic rate and length of spiracular closure. At low temperatures both species exhibit lengthy periods of spiracular closure reflecting a discontinuous respiratory pattern. As metabolic rate increased, periods of spiracular closure decreased and insects displayed a more cyclical pattern of respiration. As metabolic rates increased even further under the highest experimental temperatures, periods of spiracular closure decreased even more and a continuous respiratory pattern was employed by both species. Our results suggest that the three described respiratory patterns in insects are not distinct but are instead a continuum of respiratory responses driven by the metabolic demand experienced by the insect.</description><identifier>ISSN: 0022-1910</identifier><identifier>EISSN: 1879-1611</identifier><identifier>DOI: 10.1016/j.jinsphys.2009.05.018</identifier><identifier>PMID: 19523955</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>aerobic conditions ; ambient temperature ; Animal Structures - physiology ; Animals ; biochemical mechanisms ; breathing ; Carbon Dioxide - metabolism ; Cockroaches - physiology ; cyclic gas exchange ; DGC ; discontinuous gas exchange ; energy metabolism ; Energy Metabolism - physiology ; energy requirements ; flow ; gas exchange ; Gromphadorhina portentosa ; homeostasis ; insect physiology ; Insect respiration ; insects ; Metabolic rate ; Metabolism ; oxygen requirement ; physical activity ; physiological response ; Respiratory pattern ; Respiratory Physiological Phenomena ; Rhodnius - physiology ; Rhodnius prolixus ; spiracles ; Temperature</subject><ispartof>Journal of insect physiology, 2010-05, Vol.56 (5), p.522-528</ispartof><rights>2009</rights><rights>Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-6f506f5c2d0565793278dada2dcd888a6db4174ba318199cac28679f2378a8203</citedby><cites>FETCH-LOGICAL-c423t-6f506f5c2d0565793278dada2dcd888a6db4174ba318199cac28679f2378a8203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jinsphys.2009.05.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19523955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Contreras, H.L.</creatorcontrib><creatorcontrib>Bradley, T.J.</creatorcontrib><title>Transitions in insect respiratory patterns are controlled by changes in metabolic rate</title><title>Journal of insect physiology</title><addtitle>J Insect Physiol</addtitle><description>We examined the respiratory patterns of Rhodnius prolixus and Gromphadorhina portentosa as metabolic rates varied with temperature to determine whether insects transition from discontinuous (DGC), cyclical and continuous respiration as a response to increasing aerobic demand. Using flow through respirometry we: (1) determined the effects of temperature on metabolic rate; (2) objectively defined periods of spiracular closure; (3) observed whether there was a correlation between metabolic rate and length of spiracular closure. At low temperatures both species exhibit lengthy periods of spiracular closure reflecting a discontinuous respiratory pattern. As metabolic rate increased, periods of spiracular closure decreased and insects displayed a more cyclical pattern of respiration. As metabolic rates increased even further under the highest experimental temperatures, periods of spiracular closure decreased even more and a continuous respiratory pattern was employed by both species. Our results suggest that the three described respiratory patterns in insects are not distinct but are instead a continuum of respiratory responses driven by the metabolic demand experienced by the insect.</description><subject>aerobic conditions</subject><subject>ambient temperature</subject><subject>Animal Structures - physiology</subject><subject>Animals</subject><subject>biochemical mechanisms</subject><subject>breathing</subject><subject>Carbon Dioxide - metabolism</subject><subject>Cockroaches - physiology</subject><subject>cyclic gas exchange</subject><subject>DGC</subject><subject>discontinuous gas exchange</subject><subject>energy metabolism</subject><subject>Energy Metabolism - physiology</subject><subject>energy requirements</subject><subject>flow</subject><subject>gas exchange</subject><subject>Gromphadorhina portentosa</subject><subject>homeostasis</subject><subject>insect physiology</subject><subject>Insect respiration</subject><subject>insects</subject><subject>Metabolic rate</subject><subject>Metabolism</subject><subject>oxygen requirement</subject><subject>physical activity</subject><subject>physiological response</subject><subject>Respiratory pattern</subject><subject>Respiratory Physiological Phenomena</subject><subject>Rhodnius - physiology</subject><subject>Rhodnius prolixus</subject><subject>spiracles</subject><subject>Temperature</subject><issn>0022-1910</issn><issn>1879-1611</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v3CAQhlHVqtmm_Qupbz3ZHcBguLWK-iVF6qFJrwjDOGHlNS6wkfbfl81u1WMkEId5Xmb0DCFXFDoKVH7cdtuw5PXhkDsGoDsQHVD1gmyoGnRLJaUvyQaAsZZqChfkTc5bABBSidfkgmrBuBZiQ37fJrvkUEJcchOWejK60iTMa0i2xHRoVlsKplq2CRsXl5LiPKNvxkPjHuxyj0_BHRY7xjm4psbwLXk12Tnju_N7Se6-frm9_t7e_Pz24_rzTet6xksrJwH1OubrZGLQnA3KW2-Zd14pZaUfezr0o-VUUa2ddUzJQU-MD8oqBvySfDj9u6b4Z4-5mF3IDufZLhj32Qy9BOCyl8-TnAsNehCVlCfSpZhzwsmsKexsOhgK5ijfbM0_-eYo34AwVX4NXp1b7Mcd-v-xs-0KvD8Bk43G3qeQzd0vBpQf01w-9f50IrBKewyYTHYBF4c-pLoX42N4boq__dujDg</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Contreras, H.L.</creator><creator>Bradley, T.J.</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SS</scope></search><sort><creationdate>20100501</creationdate><title>Transitions in insect respiratory patterns are controlled by changes in metabolic rate</title><author>Contreras, H.L. ; Bradley, T.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-6f506f5c2d0565793278dada2dcd888a6db4174ba318199cac28679f2378a8203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>aerobic conditions</topic><topic>ambient temperature</topic><topic>Animal Structures - physiology</topic><topic>Animals</topic><topic>biochemical mechanisms</topic><topic>breathing</topic><topic>Carbon Dioxide - metabolism</topic><topic>Cockroaches - physiology</topic><topic>cyclic gas exchange</topic><topic>DGC</topic><topic>discontinuous gas exchange</topic><topic>energy metabolism</topic><topic>Energy Metabolism - physiology</topic><topic>energy requirements</topic><topic>flow</topic><topic>gas exchange</topic><topic>Gromphadorhina portentosa</topic><topic>homeostasis</topic><topic>insect physiology</topic><topic>Insect respiration</topic><topic>insects</topic><topic>Metabolic rate</topic><topic>Metabolism</topic><topic>oxygen requirement</topic><topic>physical activity</topic><topic>physiological response</topic><topic>Respiratory pattern</topic><topic>Respiratory Physiological Phenomena</topic><topic>Rhodnius - physiology</topic><topic>Rhodnius prolixus</topic><topic>spiracles</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Contreras, H.L.</creatorcontrib><creatorcontrib>Bradley, T.J.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Entomology Abstracts (Full archive)</collection><jtitle>Journal of insect physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Contreras, H.L.</au><au>Bradley, T.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transitions in insect respiratory patterns are controlled by changes in metabolic rate</atitle><jtitle>Journal of insect physiology</jtitle><addtitle>J Insect Physiol</addtitle><date>2010-05-01</date><risdate>2010</risdate><volume>56</volume><issue>5</issue><spage>522</spage><epage>528</epage><pages>522-528</pages><issn>0022-1910</issn><eissn>1879-1611</eissn><abstract>We examined the respiratory patterns of Rhodnius prolixus and Gromphadorhina portentosa as metabolic rates varied with temperature to determine whether insects transition from discontinuous (DGC), cyclical and continuous respiration as a response to increasing aerobic demand. Using flow through respirometry we: (1) determined the effects of temperature on metabolic rate; (2) objectively defined periods of spiracular closure; (3) observed whether there was a correlation between metabolic rate and length of spiracular closure. At low temperatures both species exhibit lengthy periods of spiracular closure reflecting a discontinuous respiratory pattern. As metabolic rate increased, periods of spiracular closure decreased and insects displayed a more cyclical pattern of respiration. As metabolic rates increased even further under the highest experimental temperatures, periods of spiracular closure decreased even more and a continuous respiratory pattern was employed by both species. Our results suggest that the three described respiratory patterns in insects are not distinct but are instead a continuum of respiratory responses driven by the metabolic demand experienced by the insect.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>19523955</pmid><doi>10.1016/j.jinsphys.2009.05.018</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1910 |
ispartof | Journal of insect physiology, 2010-05, Vol.56 (5), p.522-528 |
issn | 0022-1910 1879-1611 |
language | eng |
recordid | cdi_proquest_miscellaneous_746003646 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | aerobic conditions ambient temperature Animal Structures - physiology Animals biochemical mechanisms breathing Carbon Dioxide - metabolism Cockroaches - physiology cyclic gas exchange DGC discontinuous gas exchange energy metabolism Energy Metabolism - physiology energy requirements flow gas exchange Gromphadorhina portentosa homeostasis insect physiology Insect respiration insects Metabolic rate Metabolism oxygen requirement physical activity physiological response Respiratory pattern Respiratory Physiological Phenomena Rhodnius - physiology Rhodnius prolixus spiracles Temperature |
title | Transitions in insect respiratory patterns are controlled by changes in metabolic rate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A43%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transitions%20in%20insect%20respiratory%20patterns%20are%20controlled%20by%20changes%20in%20metabolic%20rate&rft.jtitle=Journal%20of%20insect%20physiology&rft.au=Contreras,%20H.L.&rft.date=2010-05-01&rft.volume=56&rft.issue=5&rft.spage=522&rft.epage=528&rft.pages=522-528&rft.issn=0022-1910&rft.eissn=1879-1611&rft_id=info:doi/10.1016/j.jinsphys.2009.05.018&rft_dat=%3Cproquest_cross%3E746003646%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733590975&rft_id=info:pmid/19523955&rft_els_id=S0022191009002297&rfr_iscdi=true |