Magnetic resonance spectroscopy in pediatric neuroradiology: clinical and research applications

Magnetic resonance spectroscopy (MRS) offers a unique, noninvasive approach to assess pediatric neurological abnormalities at microscopic levels by quantifying cellular metabolites. The most widely available MRS method, proton ( 1 H; hydrogen) spectroscopy, is FDA approved for general use and can be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pediatric radiology 2010, Vol.40 (1), p.3-30, Article 3
Hauptverfasser: Panigrahy, Ashok, Nelson, Marvin D., Blüml, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30
container_issue 1
container_start_page 3
container_title Pediatric radiology
container_volume 40
creator Panigrahy, Ashok
Nelson, Marvin D.
Blüml, Stefan
description Magnetic resonance spectroscopy (MRS) offers a unique, noninvasive approach to assess pediatric neurological abnormalities at microscopic levels by quantifying cellular metabolites. The most widely available MRS method, proton ( 1 H; hydrogen) spectroscopy, is FDA approved for general use and can be ordered by clinicians for pediatric neuroimaging studies if indicated. There are a multitude of both acquisition and post-processing methods that can be used in the implementation of MR spectroscopy. MRS in pediatric neuroimaging is challenging to interpret because of dramatic normal developmental changes that occur in metabolites, particularly in the first year of life. Still, MRS has been proven to provide additional clinically relevant information for several pediatric neurological disease processes such as brain tumors, infectious processes, white matter disorders, and neonatal injury. MRS can also be used as a powerful quantitative research tool. In this article, specific research applications using MRS will be demonstrated in relation to neonatal brain injury and pediatric brain tumor imaging.
doi_str_mv 10.1007/s00247-009-1450-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745975391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733862750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-f5d05ca3a3931413f3abb1869ac6406ed475bec575c761828d1a1c7172473d2e3</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVpaDbb_oBcgumlJ6cz-rDs3EpoPiAll_QstPLsVsErOZJ92Pz6aNmFQKH0JJh55hUzD2PnCJcIoL9nAC51DdDVKBXUrx_YAqXgNXZd-5EtQADWIGV3ys5yfgYAoVB8YqelLzQX7YKZX3YTaPKuSpRjsMFRlUdyU4rZxXFX-VCN1Hs7pcIEmlNMtvdxiJvdVeUGH7yzQ2VDvw8gm9yfyo7jUKqTjyF_ZidrO2T6cnyX7PfNz6fru_rh8fb--sdD7STwqV6rHpSzwopOoESxFna1wrbprGskNNRLrVbklFZON9jytkeLTqMu-4uek1iyb4fcMcWXmfJktj47GgYbKM7ZaKk6rUSH_yeFaBuuFRTy61_kc5xTKGsYzrkG2ZYzLhkeIFculhOtzZj81qadQTB7S-ZgyRRLZm_JvJaZi2PwvNpS_z5x1FIAfgByaYUNpfef_536Bqanndg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222704899</pqid></control><display><type>article</type><title>Magnetic resonance spectroscopy in pediatric neuroradiology: clinical and research applications</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Panigrahy, Ashok ; Nelson, Marvin D. ; Blüml, Stefan</creator><creatorcontrib>Panigrahy, Ashok ; Nelson, Marvin D. ; Blüml, Stefan</creatorcontrib><description>Magnetic resonance spectroscopy (MRS) offers a unique, noninvasive approach to assess pediatric neurological abnormalities at microscopic levels by quantifying cellular metabolites. The most widely available MRS method, proton ( 1 H; hydrogen) spectroscopy, is FDA approved for general use and can be ordered by clinicians for pediatric neuroimaging studies if indicated. There are a multitude of both acquisition and post-processing methods that can be used in the implementation of MR spectroscopy. MRS in pediatric neuroimaging is challenging to interpret because of dramatic normal developmental changes that occur in metabolites, particularly in the first year of life. Still, MRS has been proven to provide additional clinically relevant information for several pediatric neurological disease processes such as brain tumors, infectious processes, white matter disorders, and neonatal injury. MRS can also be used as a powerful quantitative research tool. In this article, specific research applications using MRS will be demonstrated in relation to neonatal brain injury and pediatric brain tumor imaging.</description><identifier>ISSN: 0301-0449</identifier><identifier>EISSN: 1432-1998</identifier><identifier>DOI: 10.1007/s00247-009-1450-z</identifier><identifier>PMID: 19937238</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Biomarkers - analysis ; Biomedical Research - trends ; Brain Injuries - diagnosis ; Brain Injuries - metabolism ; Brain Neoplasms - diagnosis ; Brain Neoplasms - metabolism ; Child ; Clinical Medicine - trends ; Humans ; Imaging ; Infant, Newborn ; Magnetic Resonance Imaging - methods ; Magnetic Resonance Spectroscopy - methods ; Medicine ; Medicine &amp; Public Health ; Minisymposium ; Neuroradiography - trends ; Neuroradiology ; Nuclear Medicine ; Oncology ; Pediatrics ; Pediatrics - trends ; Radiology ; Ultrasound ; United States</subject><ispartof>Pediatric radiology, 2010, Vol.40 (1), p.3-30, Article 3</ispartof><rights>Springer-Verlag 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-f5d05ca3a3931413f3abb1869ac6406ed475bec575c761828d1a1c7172473d2e3</citedby><cites>FETCH-LOGICAL-c402t-f5d05ca3a3931413f3abb1869ac6406ed475bec575c761828d1a1c7172473d2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00247-009-1450-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00247-009-1450-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19937238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Panigrahy, Ashok</creatorcontrib><creatorcontrib>Nelson, Marvin D.</creatorcontrib><creatorcontrib>Blüml, Stefan</creatorcontrib><title>Magnetic resonance spectroscopy in pediatric neuroradiology: clinical and research applications</title><title>Pediatric radiology</title><addtitle>Pediatr Radiol</addtitle><addtitle>Pediatr Radiol</addtitle><description>Magnetic resonance spectroscopy (MRS) offers a unique, noninvasive approach to assess pediatric neurological abnormalities at microscopic levels by quantifying cellular metabolites. The most widely available MRS method, proton ( 1 H; hydrogen) spectroscopy, is FDA approved for general use and can be ordered by clinicians for pediatric neuroimaging studies if indicated. There are a multitude of both acquisition and post-processing methods that can be used in the implementation of MR spectroscopy. MRS in pediatric neuroimaging is challenging to interpret because of dramatic normal developmental changes that occur in metabolites, particularly in the first year of life. Still, MRS has been proven to provide additional clinically relevant information for several pediatric neurological disease processes such as brain tumors, infectious processes, white matter disorders, and neonatal injury. MRS can also be used as a powerful quantitative research tool. In this article, specific research applications using MRS will be demonstrated in relation to neonatal brain injury and pediatric brain tumor imaging.</description><subject>Biomarkers - analysis</subject><subject>Biomedical Research - trends</subject><subject>Brain Injuries - diagnosis</subject><subject>Brain Injuries - metabolism</subject><subject>Brain Neoplasms - diagnosis</subject><subject>Brain Neoplasms - metabolism</subject><subject>Child</subject><subject>Clinical Medicine - trends</subject><subject>Humans</subject><subject>Imaging</subject><subject>Infant, Newborn</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Minisymposium</subject><subject>Neuroradiography - trends</subject><subject>Neuroradiology</subject><subject>Nuclear Medicine</subject><subject>Oncology</subject><subject>Pediatrics</subject><subject>Pediatrics - trends</subject><subject>Radiology</subject><subject>Ultrasound</subject><subject>United States</subject><issn>0301-0449</issn><issn>1432-1998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkU1r3DAQhkVpaDbb_oBcgumlJ6cz-rDs3EpoPiAll_QstPLsVsErOZJ92Pz6aNmFQKH0JJh55hUzD2PnCJcIoL9nAC51DdDVKBXUrx_YAqXgNXZd-5EtQADWIGV3ys5yfgYAoVB8YqelLzQX7YKZX3YTaPKuSpRjsMFRlUdyU4rZxXFX-VCN1Hs7pcIEmlNMtvdxiJvdVeUGH7yzQ2VDvw8gm9yfyo7jUKqTjyF_ZidrO2T6cnyX7PfNz6fru_rh8fb--sdD7STwqV6rHpSzwopOoESxFna1wrbprGskNNRLrVbklFZON9jytkeLTqMu-4uek1iyb4fcMcWXmfJktj47GgYbKM7ZaKk6rUSH_yeFaBuuFRTy61_kc5xTKGsYzrkG2ZYzLhkeIFculhOtzZj81qadQTB7S-ZgyRRLZm_JvJaZi2PwvNpS_z5x1FIAfgByaYUNpfef_536Bqanndg</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Panigrahy, Ashok</creator><creator>Nelson, Marvin D.</creator><creator>Blüml, Stefan</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>2010</creationdate><title>Magnetic resonance spectroscopy in pediatric neuroradiology: clinical and research applications</title><author>Panigrahy, Ashok ; Nelson, Marvin D. ; Blüml, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-f5d05ca3a3931413f3abb1869ac6406ed475bec575c761828d1a1c7172473d2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biomarkers - analysis</topic><topic>Biomedical Research - trends</topic><topic>Brain Injuries - diagnosis</topic><topic>Brain Injuries - metabolism</topic><topic>Brain Neoplasms - diagnosis</topic><topic>Brain Neoplasms - metabolism</topic><topic>Child</topic><topic>Clinical Medicine - trends</topic><topic>Humans</topic><topic>Imaging</topic><topic>Infant, Newborn</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Minisymposium</topic><topic>Neuroradiography - trends</topic><topic>Neuroradiology</topic><topic>Nuclear Medicine</topic><topic>Oncology</topic><topic>Pediatrics</topic><topic>Pediatrics - trends</topic><topic>Radiology</topic><topic>Ultrasound</topic><topic>United States</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panigrahy, Ashok</creatorcontrib><creatorcontrib>Nelson, Marvin D.</creatorcontrib><creatorcontrib>Blüml, Stefan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Pediatric radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panigrahy, Ashok</au><au>Nelson, Marvin D.</au><au>Blüml, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic resonance spectroscopy in pediatric neuroradiology: clinical and research applications</atitle><jtitle>Pediatric radiology</jtitle><stitle>Pediatr Radiol</stitle><addtitle>Pediatr Radiol</addtitle><date>2010</date><risdate>2010</risdate><volume>40</volume><issue>1</issue><spage>3</spage><epage>30</epage><pages>3-30</pages><artnum>3</artnum><issn>0301-0449</issn><eissn>1432-1998</eissn><abstract>Magnetic resonance spectroscopy (MRS) offers a unique, noninvasive approach to assess pediatric neurological abnormalities at microscopic levels by quantifying cellular metabolites. The most widely available MRS method, proton ( 1 H; hydrogen) spectroscopy, is FDA approved for general use and can be ordered by clinicians for pediatric neuroimaging studies if indicated. There are a multitude of both acquisition and post-processing methods that can be used in the implementation of MR spectroscopy. MRS in pediatric neuroimaging is challenging to interpret because of dramatic normal developmental changes that occur in metabolites, particularly in the first year of life. Still, MRS has been proven to provide additional clinically relevant information for several pediatric neurological disease processes such as brain tumors, infectious processes, white matter disorders, and neonatal injury. MRS can also be used as a powerful quantitative research tool. In this article, specific research applications using MRS will be demonstrated in relation to neonatal brain injury and pediatric brain tumor imaging.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>19937238</pmid><doi>10.1007/s00247-009-1450-z</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0301-0449
ispartof Pediatric radiology, 2010, Vol.40 (1), p.3-30, Article 3
issn 0301-0449
1432-1998
language eng
recordid cdi_proquest_miscellaneous_745975391
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Biomarkers - analysis
Biomedical Research - trends
Brain Injuries - diagnosis
Brain Injuries - metabolism
Brain Neoplasms - diagnosis
Brain Neoplasms - metabolism
Child
Clinical Medicine - trends
Humans
Imaging
Infant, Newborn
Magnetic Resonance Imaging - methods
Magnetic Resonance Spectroscopy - methods
Medicine
Medicine & Public Health
Minisymposium
Neuroradiography - trends
Neuroradiology
Nuclear Medicine
Oncology
Pediatrics
Pediatrics - trends
Radiology
Ultrasound
United States
title Magnetic resonance spectroscopy in pediatric neuroradiology: clinical and research applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A55%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20resonance%20spectroscopy%20in%20pediatric%20neuroradiology:%20clinical%20and%20research%20applications&rft.jtitle=Pediatric%20radiology&rft.au=Panigrahy,%20Ashok&rft.date=2010&rft.volume=40&rft.issue=1&rft.spage=3&rft.epage=30&rft.pages=3-30&rft.artnum=3&rft.issn=0301-0449&rft.eissn=1432-1998&rft_id=info:doi/10.1007/s00247-009-1450-z&rft_dat=%3Cproquest_cross%3E733862750%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222704899&rft_id=info:pmid/19937238&rfr_iscdi=true