Robust digital autopilot design for spacecraft equipped with pulse-operated thrusters

The analysis and design of attitude control systems for spacecraft employing pulse-operated (on-off) thrusters is usually accomplished through a combination of modeling approximations and empirical techniques. A new thruster pulse-modulation theory for pointing and tracking applications is developed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of guidance, control, and dynamics control, and dynamics, 1996-09, Vol.19 (5), p.1047-1055
Hauptverfasser: Thurman, Sam W, Flashner, Henryk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1055
container_issue 5
container_start_page 1047
container_title Journal of guidance, control, and dynamics
container_volume 19
creator Thurman, Sam W
Flashner, Henryk
description The analysis and design of attitude control systems for spacecraft employing pulse-operated (on-off) thrusters is usually accomplished through a combination of modeling approximations and empirical techniques. A new thruster pulse-modulation theory for pointing and tracking applications is developed from nonlinear control theory. This theory provides the framework for an autopilot suitable for use in digital computers whose performance and robustness properties are characterized analytically in the design process. Given bounds on the anticipated dynamical modeling errors and sensor errors, it is shown that design specifications can be established and acceptable performance ensured in the presence of these error sources. Spacecraft with time-varying inertia properties can be accommodated, as well as clustered thruster configurations that provide multiple discrete torque levels about one or more spacecraft axes. A realistic application of the theory is illustrated via detailed computer simulation of a digital autopilot designed for midcourse guidance of a hypothetical interplanetary spacecraft. (Author)
doi_str_mv 10.2514/3.21744
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745965285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26328014</sourcerecordid><originalsourceid>FETCH-LOGICAL-a377t-443d71751d132d5578b21f27d8bf59a1797c22e101f1665e8db2d1bf1caa53ff3</originalsourceid><addsrcrecordid>eNp90d9LwzAQB_AgCs4p_gsFRfGhM5c0Tfcow18gCOKeQ9okW0a3ZEmK-t9b3WCg4tPB3YfvcRxCp4BHhEFxTUcEeFHsoQEwSnNaVcU-GmBOIWd4jA_RUYwLjIGWwAdo-uLqLqZM2ZlNss1kl5y3res7OtrZKjMuZNHLRjdBmpTpdWe91yp7s2me-a6NOndeB5n6XpqHPkuHeIwOjOxHJ9s6RNO729fJQ_70fP84uXnKJeU85UVBFQfOQAElijFe1QQM4aqqDRtL4GPeEKIBg4GyZLpSNVFQG2ikZNQYOkSXm1wf3LrTMYmljY1uW7nSrouCF2xcMlKxXl78K0lJSYWh6OHZD7hwXVj1VwhCgVaYY853i5vgYgzaCB_sUoYPAVh8vUFQ8f2GXp5vpLRS7rJ-s6u_2HYsvDLCdG2b9Huin2LFk1I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313807077</pqid></control><display><type>article</type><title>Robust digital autopilot design for spacecraft equipped with pulse-operated thrusters</title><source>Alma/SFX Local Collection</source><creator>Thurman, Sam W ; Flashner, Henryk</creator><creatorcontrib>Thurman, Sam W ; Flashner, Henryk</creatorcontrib><description>The analysis and design of attitude control systems for spacecraft employing pulse-operated (on-off) thrusters is usually accomplished through a combination of modeling approximations and empirical techniques. A new thruster pulse-modulation theory for pointing and tracking applications is developed from nonlinear control theory. This theory provides the framework for an autopilot suitable for use in digital computers whose performance and robustness properties are characterized analytically in the design process. Given bounds on the anticipated dynamical modeling errors and sensor errors, it is shown that design specifications can be established and acceptable performance ensured in the presence of these error sources. Spacecraft with time-varying inertia properties can be accommodated, as well as clustered thruster configurations that provide multiple discrete torque levels about one or more spacecraft axes. A realistic application of the theory is illustrated via detailed computer simulation of a digital autopilot designed for midcourse guidance of a hypothetical interplanetary spacecraft. (Author)</description><identifier>ISSN: 0731-5090</identifier><identifier>EISSN: 1533-3884</identifier><identifier>DOI: 10.2514/3.21744</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Approximation ; Automatic pilots ; Computer simulation ; Control theory ; Design specifications ; Digital computers ; Errors ; Lyapunov methods ; Mathematical models ; Nonlinear control systems ; Pulse modulation ; Robustness (control systems) ; Thrusters ; Time varying systems ; Torque ; Vehicles</subject><ispartof>Journal of guidance, control, and dynamics, 1996-09, Vol.19 (5), p.1047-1055</ispartof><rights>Copyright American Institute of Aeronautics and Astronautics Sep/Oct 1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a377t-443d71751d132d5578b21f27d8bf59a1797c22e101f1665e8db2d1bf1caa53ff3</citedby><cites>FETCH-LOGICAL-a377t-443d71751d132d5578b21f27d8bf59a1797c22e101f1665e8db2d1bf1caa53ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Thurman, Sam W</creatorcontrib><creatorcontrib>Flashner, Henryk</creatorcontrib><title>Robust digital autopilot design for spacecraft equipped with pulse-operated thrusters</title><title>Journal of guidance, control, and dynamics</title><description>The analysis and design of attitude control systems for spacecraft employing pulse-operated (on-off) thrusters is usually accomplished through a combination of modeling approximations and empirical techniques. A new thruster pulse-modulation theory for pointing and tracking applications is developed from nonlinear control theory. This theory provides the framework for an autopilot suitable for use in digital computers whose performance and robustness properties are characterized analytically in the design process. Given bounds on the anticipated dynamical modeling errors and sensor errors, it is shown that design specifications can be established and acceptable performance ensured in the presence of these error sources. Spacecraft with time-varying inertia properties can be accommodated, as well as clustered thruster configurations that provide multiple discrete torque levels about one or more spacecraft axes. A realistic application of the theory is illustrated via detailed computer simulation of a digital autopilot designed for midcourse guidance of a hypothetical interplanetary spacecraft. (Author)</description><subject>Approximation</subject><subject>Automatic pilots</subject><subject>Computer simulation</subject><subject>Control theory</subject><subject>Design specifications</subject><subject>Digital computers</subject><subject>Errors</subject><subject>Lyapunov methods</subject><subject>Mathematical models</subject><subject>Nonlinear control systems</subject><subject>Pulse modulation</subject><subject>Robustness (control systems)</subject><subject>Thrusters</subject><subject>Time varying systems</subject><subject>Torque</subject><subject>Vehicles</subject><issn>0731-5090</issn><issn>1533-3884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp90d9LwzAQB_AgCs4p_gsFRfGhM5c0Tfcow18gCOKeQ9okW0a3ZEmK-t9b3WCg4tPB3YfvcRxCp4BHhEFxTUcEeFHsoQEwSnNaVcU-GmBOIWd4jA_RUYwLjIGWwAdo-uLqLqZM2ZlNss1kl5y3res7OtrZKjMuZNHLRjdBmpTpdWe91yp7s2me-a6NOndeB5n6XpqHPkuHeIwOjOxHJ9s6RNO729fJQ_70fP84uXnKJeU85UVBFQfOQAElijFe1QQM4aqqDRtL4GPeEKIBg4GyZLpSNVFQG2ikZNQYOkSXm1wf3LrTMYmljY1uW7nSrouCF2xcMlKxXl78K0lJSYWh6OHZD7hwXVj1VwhCgVaYY853i5vgYgzaCB_sUoYPAVh8vUFQ8f2GXp5vpLRS7rJ-s6u_2HYsvDLCdG2b9Huin2LFk1I</recordid><startdate>19960901</startdate><enddate>19960901</enddate><creator>Thurman, Sam W</creator><creator>Flashner, Henryk</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TC</scope></search><sort><creationdate>19960901</creationdate><title>Robust digital autopilot design for spacecraft equipped with pulse-operated thrusters</title><author>Thurman, Sam W ; Flashner, Henryk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a377t-443d71751d132d5578b21f27d8bf59a1797c22e101f1665e8db2d1bf1caa53ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Approximation</topic><topic>Automatic pilots</topic><topic>Computer simulation</topic><topic>Control theory</topic><topic>Design specifications</topic><topic>Digital computers</topic><topic>Errors</topic><topic>Lyapunov methods</topic><topic>Mathematical models</topic><topic>Nonlinear control systems</topic><topic>Pulse modulation</topic><topic>Robustness (control systems)</topic><topic>Thrusters</topic><topic>Time varying systems</topic><topic>Torque</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thurman, Sam W</creatorcontrib><creatorcontrib>Flashner, Henryk</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Journal of guidance, control, and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thurman, Sam W</au><au>Flashner, Henryk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust digital autopilot design for spacecraft equipped with pulse-operated thrusters</atitle><jtitle>Journal of guidance, control, and dynamics</jtitle><date>1996-09-01</date><risdate>1996</risdate><volume>19</volume><issue>5</issue><spage>1047</spage><epage>1055</epage><pages>1047-1055</pages><issn>0731-5090</issn><eissn>1533-3884</eissn><abstract>The analysis and design of attitude control systems for spacecraft employing pulse-operated (on-off) thrusters is usually accomplished through a combination of modeling approximations and empirical techniques. A new thruster pulse-modulation theory for pointing and tracking applications is developed from nonlinear control theory. This theory provides the framework for an autopilot suitable for use in digital computers whose performance and robustness properties are characterized analytically in the design process. Given bounds on the anticipated dynamical modeling errors and sensor errors, it is shown that design specifications can be established and acceptable performance ensured in the presence of these error sources. Spacecraft with time-varying inertia properties can be accommodated, as well as clustered thruster configurations that provide multiple discrete torque levels about one or more spacecraft axes. A realistic application of the theory is illustrated via detailed computer simulation of a digital autopilot designed for midcourse guidance of a hypothetical interplanetary spacecraft. (Author)</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/3.21744</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0731-5090
ispartof Journal of guidance, control, and dynamics, 1996-09, Vol.19 (5), p.1047-1055
issn 0731-5090
1533-3884
language eng
recordid cdi_proquest_miscellaneous_745965285
source Alma/SFX Local Collection
subjects Approximation
Automatic pilots
Computer simulation
Control theory
Design specifications
Digital computers
Errors
Lyapunov methods
Mathematical models
Nonlinear control systems
Pulse modulation
Robustness (control systems)
Thrusters
Time varying systems
Torque
Vehicles
title Robust digital autopilot design for spacecraft equipped with pulse-operated thrusters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A33%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20digital%20autopilot%20design%20for%20spacecraft%20equipped%20with%20pulse-operated%20thrusters&rft.jtitle=Journal%20of%20guidance,%20control,%20and%20dynamics&rft.au=Thurman,%20Sam%20W&rft.date=1996-09-01&rft.volume=19&rft.issue=5&rft.spage=1047&rft.epage=1055&rft.pages=1047-1055&rft.issn=0731-5090&rft.eissn=1533-3884&rft_id=info:doi/10.2514/3.21744&rft_dat=%3Cproquest_cross%3E26328014%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313807077&rft_id=info:pmid/&rfr_iscdi=true