Numerical Solution of Two-Dimensional Incompressible Power-Law Fluids Using Pseudo-Compressibility Method

A numerical method using the pseudo-compressibility method is applied to the analysis of the two-dimensional flow of power-law fluids. Based on the method of lines, the rational Runge -Kutta time integration scheme is combined with the central finite difference approximation for spacial discretizati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nihon Kikai Gakkai rombunshuu. B hen 1994/11/25, Vol.60(579), pp.3852-3858
Hauptverfasser: Yanagi, Hirotoshi, Kurokawa, Michihiro, Kimura, Akio, Morinishi, Koji, Satofuka, Nobuyuki
Format: Artikel
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3858
container_issue 579
container_start_page 3852
container_title Nihon Kikai Gakkai rombunshuu. B hen
container_volume 60
creator Yanagi, Hirotoshi
Kurokawa, Michihiro
Kimura, Akio
Morinishi, Koji
Satofuka, Nobuyuki
description A numerical method using the pseudo-compressibility method is applied to the analysis of the two-dimensional flow of power-law fluids. Based on the method of lines, the rational Runge -Kutta time integration scheme is combined with the central finite difference approximation for spacial discretization. The residual averaging is incorporated into the basic scheme in order to accelerate the convergence rate to a steady-state solution. The pseudo-compressibility parameter is adjusted corresponding to Reynolds number and computational grids so that the stability of computation can be significantly enhanced especially for low-Reynolds-number flow. Two kinds of 2 to 1 contraction flow through two-dimensional passages are analyzed with power indices 0.1 ≤ n ≤ 2.0, and at Reynolds number Re=100 and Re=0.01. The numerical results for velocity and pressure gradient profiles and for shear stress at the wall are in agreement with theoretical ones.
doi_str_mv 10.1299/kikaib.60.3852
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745963370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26478543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3352-23abdf79d55b487f279809f884650deeb30f1ba96e69a8fc05ca754ce049e7a93</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EElVhZc4EU4oTx18jKhQQ5UMCZstxLmBw4mInqvrvSdSqbEyvdPc8J92L0FmGZ1ku5eW3_da2nDE8I4LmB2iSCVGkghTsEE0wETylOGPH6DRGW2KMJWGS8AmyT30DwRrtklfv-s76NvF18rb26bVtoI3DYNjdt8Y3qwCj7SB58WsI6VKvk4XrbRWT92jbj-QlQl_5dL5HrbPdJnmE7tNXJ-io1i7C6S6n6H1x8za_S5fPt_fzq2VqCKF5mhNdVjWXFaVlIXidcymwrIdvGMUVQElwnZVaMmBSi9pgajSnhQFcSOBakim62N5dBf_TQ-xUY6MB53QLvo-KF1QyQjgeyPN_yZwVXNCCDOBsC5rgYwxQq1WwjQ4blWE11q-29SuG1Vj_IDxsha_Y6Q_Y4zp01jjY4ZnkclToX4z2njKfOihoyS_UfJVJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26478543</pqid></control><display><type>article</type><title>Numerical Solution of Two-Dimensional Incompressible Power-Law Fluids Using Pseudo-Compressibility Method</title><source>J-STAGE (Japan Science &amp; Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yanagi, Hirotoshi ; Kurokawa, Michihiro ; Kimura, Akio ; Morinishi, Koji ; Satofuka, Nobuyuki</creator><creatorcontrib>Yanagi, Hirotoshi ; Kurokawa, Michihiro ; Kimura, Akio ; Morinishi, Koji ; Satofuka, Nobuyuki</creatorcontrib><description>A numerical method using the pseudo-compressibility method is applied to the analysis of the two-dimensional flow of power-law fluids. Based on the method of lines, the rational Runge -Kutta time integration scheme is combined with the central finite difference approximation for spacial discretization. The residual averaging is incorporated into the basic scheme in order to accelerate the convergence rate to a steady-state solution. The pseudo-compressibility parameter is adjusted corresponding to Reynolds number and computational grids so that the stability of computation can be significantly enhanced especially for low-Reynolds-number flow. Two kinds of 2 to 1 contraction flow through two-dimensional passages are analyzed with power indices 0.1 ≤ n ≤ 2.0, and at Reynolds number Re=100 and Re=0.01. The numerical results for velocity and pressure gradient profiles and for shear stress at the wall are in agreement with theoretical ones.</description><identifier>ISSN: 0387-5016</identifier><identifier>EISSN: 1884-8346</identifier><identifier>DOI: 10.1299/kikaib.60.3852</identifier><language>eng ; jpn</language><publisher>The Japan Society of Mechanical Engineers</publisher><subject>Approximation theory ; Compressibility of liquids ; Computational fluid dynamics ; Convergence of numerical methods ; Finite difference method ; Integration ; Non Newtonian liquids ; Power-Law Fluid ; Reynolds number ; Shear stress</subject><ispartof>Transactions of the Japan Society of Mechanical Engineers Series B, 1994/11/25, Vol.60(579), pp.3852-3858</ispartof><rights>The Japan Society of Mechanical Engineers</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Yanagi, Hirotoshi</creatorcontrib><creatorcontrib>Kurokawa, Michihiro</creatorcontrib><creatorcontrib>Kimura, Akio</creatorcontrib><creatorcontrib>Morinishi, Koji</creatorcontrib><creatorcontrib>Satofuka, Nobuyuki</creatorcontrib><title>Numerical Solution of Two-Dimensional Incompressible Power-Law Fluids Using Pseudo-Compressibility Method</title><title>Nihon Kikai Gakkai rombunshuu. B hen</title><addtitle>JSMET</addtitle><description>A numerical method using the pseudo-compressibility method is applied to the analysis of the two-dimensional flow of power-law fluids. Based on the method of lines, the rational Runge -Kutta time integration scheme is combined with the central finite difference approximation for spacial discretization. The residual averaging is incorporated into the basic scheme in order to accelerate the convergence rate to a steady-state solution. The pseudo-compressibility parameter is adjusted corresponding to Reynolds number and computational grids so that the stability of computation can be significantly enhanced especially for low-Reynolds-number flow. Two kinds of 2 to 1 contraction flow through two-dimensional passages are analyzed with power indices 0.1 ≤ n ≤ 2.0, and at Reynolds number Re=100 and Re=0.01. The numerical results for velocity and pressure gradient profiles and for shear stress at the wall are in agreement with theoretical ones.</description><subject>Approximation theory</subject><subject>Compressibility of liquids</subject><subject>Computational fluid dynamics</subject><subject>Convergence of numerical methods</subject><subject>Finite difference method</subject><subject>Integration</subject><subject>Non Newtonian liquids</subject><subject>Power-Law Fluid</subject><subject>Reynolds number</subject><subject>Shear stress</subject><issn>0387-5016</issn><issn>1884-8346</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EElVhZc4EU4oTx18jKhQQ5UMCZstxLmBw4mInqvrvSdSqbEyvdPc8J92L0FmGZ1ku5eW3_da2nDE8I4LmB2iSCVGkghTsEE0wETylOGPH6DRGW2KMJWGS8AmyT30DwRrtklfv-s76NvF18rb26bVtoI3DYNjdt8Y3qwCj7SB58WsI6VKvk4XrbRWT92jbj-QlQl_5dL5HrbPdJnmE7tNXJ-io1i7C6S6n6H1x8za_S5fPt_fzq2VqCKF5mhNdVjWXFaVlIXidcymwrIdvGMUVQElwnZVaMmBSi9pgajSnhQFcSOBakim62N5dBf_TQ-xUY6MB53QLvo-KF1QyQjgeyPN_yZwVXNCCDOBsC5rgYwxQq1WwjQ4blWE11q-29SuG1Vj_IDxsha_Y6Q_Y4zp01jjY4ZnkclToX4z2njKfOihoyS_UfJVJ</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Yanagi, Hirotoshi</creator><creator>Kurokawa, Michihiro</creator><creator>Kimura, Akio</creator><creator>Morinishi, Koji</creator><creator>Satofuka, Nobuyuki</creator><general>The Japan Society of Mechanical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TC</scope></search><sort><creationdate>1994</creationdate><title>Numerical Solution of Two-Dimensional Incompressible Power-Law Fluids Using Pseudo-Compressibility Method</title><author>Yanagi, Hirotoshi ; Kurokawa, Michihiro ; Kimura, Akio ; Morinishi, Koji ; Satofuka, Nobuyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3352-23abdf79d55b487f279809f884650deeb30f1ba96e69a8fc05ca754ce049e7a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>1994</creationdate><topic>Approximation theory</topic><topic>Compressibility of liquids</topic><topic>Computational fluid dynamics</topic><topic>Convergence of numerical methods</topic><topic>Finite difference method</topic><topic>Integration</topic><topic>Non Newtonian liquids</topic><topic>Power-Law Fluid</topic><topic>Reynolds number</topic><topic>Shear stress</topic><toplevel>online_resources</toplevel><creatorcontrib>Yanagi, Hirotoshi</creatorcontrib><creatorcontrib>Kurokawa, Michihiro</creatorcontrib><creatorcontrib>Kimura, Akio</creatorcontrib><creatorcontrib>Morinishi, Koji</creatorcontrib><creatorcontrib>Satofuka, Nobuyuki</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Nihon Kikai Gakkai rombunshuu. B hen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yanagi, Hirotoshi</au><au>Kurokawa, Michihiro</au><au>Kimura, Akio</au><au>Morinishi, Koji</au><au>Satofuka, Nobuyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Solution of Two-Dimensional Incompressible Power-Law Fluids Using Pseudo-Compressibility Method</atitle><jtitle>Nihon Kikai Gakkai rombunshuu. B hen</jtitle><addtitle>JSMET</addtitle><date>1994</date><risdate>1994</risdate><volume>60</volume><issue>579</issue><spage>3852</spage><epage>3858</epage><pages>3852-3858</pages><issn>0387-5016</issn><eissn>1884-8346</eissn><abstract>A numerical method using the pseudo-compressibility method is applied to the analysis of the two-dimensional flow of power-law fluids. Based on the method of lines, the rational Runge -Kutta time integration scheme is combined with the central finite difference approximation for spacial discretization. The residual averaging is incorporated into the basic scheme in order to accelerate the convergence rate to a steady-state solution. The pseudo-compressibility parameter is adjusted corresponding to Reynolds number and computational grids so that the stability of computation can be significantly enhanced especially for low-Reynolds-number flow. Two kinds of 2 to 1 contraction flow through two-dimensional passages are analyzed with power indices 0.1 ≤ n ≤ 2.0, and at Reynolds number Re=100 and Re=0.01. The numerical results for velocity and pressure gradient profiles and for shear stress at the wall are in agreement with theoretical ones.</abstract><pub>The Japan Society of Mechanical Engineers</pub><doi>10.1299/kikaib.60.3852</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0387-5016
ispartof Transactions of the Japan Society of Mechanical Engineers Series B, 1994/11/25, Vol.60(579), pp.3852-3858
issn 0387-5016
1884-8346
language eng ; jpn
recordid cdi_proquest_miscellaneous_745963370
source J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese; EZB-FREE-00999 freely available EZB journals
subjects Approximation theory
Compressibility of liquids
Computational fluid dynamics
Convergence of numerical methods
Finite difference method
Integration
Non Newtonian liquids
Power-Law Fluid
Reynolds number
Shear stress
title Numerical Solution of Two-Dimensional Incompressible Power-Law Fluids Using Pseudo-Compressibility Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A37%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Solution%20of%20Two-Dimensional%20Incompressible%20Power-Law%20Fluids%20Using%20Pseudo-Compressibility%20Method&rft.jtitle=Nihon%20Kikai%20Gakkai%20rombunshuu.%20B%20hen&rft.au=Yanagi,%20Hirotoshi&rft.date=1994&rft.volume=60&rft.issue=579&rft.spage=3852&rft.epage=3858&rft.pages=3852-3858&rft.issn=0387-5016&rft.eissn=1884-8346&rft_id=info:doi/10.1299/kikaib.60.3852&rft_dat=%3Cproquest_cross%3E26478543%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26478543&rft_id=info:pmid/&rfr_iscdi=true