Numerical Solution of Two-Dimensional Incompressible Power-Law Fluids Using Pseudo-Compressibility Method
A numerical method using the pseudo-compressibility method is applied to the analysis of the two-dimensional flow of power-law fluids. Based on the method of lines, the rational Runge -Kutta time integration scheme is combined with the central finite difference approximation for spacial discretizati...
Gespeichert in:
Veröffentlicht in: | Nihon Kikai Gakkai rombunshuu. B hen 1994/11/25, Vol.60(579), pp.3852-3858 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3858 |
---|---|
container_issue | 579 |
container_start_page | 3852 |
container_title | Nihon Kikai Gakkai rombunshuu. B hen |
container_volume | 60 |
creator | Yanagi, Hirotoshi Kurokawa, Michihiro Kimura, Akio Morinishi, Koji Satofuka, Nobuyuki |
description | A numerical method using the pseudo-compressibility method is applied to the analysis of the two-dimensional flow of power-law fluids. Based on the method of lines, the rational Runge -Kutta time integration scheme is combined with the central finite difference approximation for spacial discretization. The residual averaging is incorporated into the basic scheme in order to accelerate the convergence rate to a steady-state solution. The pseudo-compressibility parameter is adjusted corresponding to Reynolds number and computational grids so that the stability of computation can be significantly enhanced especially for low-Reynolds-number flow. Two kinds of 2 to 1 contraction flow through two-dimensional passages are analyzed with power indices 0.1 ≤ n ≤ 2.0, and at Reynolds number Re=100 and Re=0.01. The numerical results for velocity and pressure gradient profiles and for shear stress at the wall are in agreement with theoretical ones. |
doi_str_mv | 10.1299/kikaib.60.3852 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745963370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26478543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3352-23abdf79d55b487f279809f884650deeb30f1ba96e69a8fc05ca754ce049e7a93</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EElVhZc4EU4oTx18jKhQQ5UMCZstxLmBw4mInqvrvSdSqbEyvdPc8J92L0FmGZ1ku5eW3_da2nDE8I4LmB2iSCVGkghTsEE0wETylOGPH6DRGW2KMJWGS8AmyT30DwRrtklfv-s76NvF18rb26bVtoI3DYNjdt8Y3qwCj7SB58WsI6VKvk4XrbRWT92jbj-QlQl_5dL5HrbPdJnmE7tNXJ-io1i7C6S6n6H1x8za_S5fPt_fzq2VqCKF5mhNdVjWXFaVlIXidcymwrIdvGMUVQElwnZVaMmBSi9pgajSnhQFcSOBakim62N5dBf_TQ-xUY6MB53QLvo-KF1QyQjgeyPN_yZwVXNCCDOBsC5rgYwxQq1WwjQ4blWE11q-29SuG1Vj_IDxsha_Y6Q_Y4zp01jjY4ZnkclToX4z2njKfOihoyS_UfJVJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26478543</pqid></control><display><type>article</type><title>Numerical Solution of Two-Dimensional Incompressible Power-Law Fluids Using Pseudo-Compressibility Method</title><source>J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yanagi, Hirotoshi ; Kurokawa, Michihiro ; Kimura, Akio ; Morinishi, Koji ; Satofuka, Nobuyuki</creator><creatorcontrib>Yanagi, Hirotoshi ; Kurokawa, Michihiro ; Kimura, Akio ; Morinishi, Koji ; Satofuka, Nobuyuki</creatorcontrib><description>A numerical method using the pseudo-compressibility method is applied to the analysis of the two-dimensional flow of power-law fluids. Based on the method of lines, the rational Runge -Kutta time integration scheme is combined with the central finite difference approximation for spacial discretization. The residual averaging is incorporated into the basic scheme in order to accelerate the convergence rate to a steady-state solution. The pseudo-compressibility parameter is adjusted corresponding to Reynolds number and computational grids so that the stability of computation can be significantly enhanced especially for low-Reynolds-number flow. Two kinds of 2 to 1 contraction flow through two-dimensional passages are analyzed with power indices 0.1 ≤ n ≤ 2.0, and at Reynolds number Re=100 and Re=0.01. The numerical results for velocity and pressure gradient profiles and for shear stress at the wall are in agreement with theoretical ones.</description><identifier>ISSN: 0387-5016</identifier><identifier>EISSN: 1884-8346</identifier><identifier>DOI: 10.1299/kikaib.60.3852</identifier><language>eng ; jpn</language><publisher>The Japan Society of Mechanical Engineers</publisher><subject>Approximation theory ; Compressibility of liquids ; Computational fluid dynamics ; Convergence of numerical methods ; Finite difference method ; Integration ; Non Newtonian liquids ; Power-Law Fluid ; Reynolds number ; Shear stress</subject><ispartof>Transactions of the Japan Society of Mechanical Engineers Series B, 1994/11/25, Vol.60(579), pp.3852-3858</ispartof><rights>The Japan Society of Mechanical Engineers</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Yanagi, Hirotoshi</creatorcontrib><creatorcontrib>Kurokawa, Michihiro</creatorcontrib><creatorcontrib>Kimura, Akio</creatorcontrib><creatorcontrib>Morinishi, Koji</creatorcontrib><creatorcontrib>Satofuka, Nobuyuki</creatorcontrib><title>Numerical Solution of Two-Dimensional Incompressible Power-Law Fluids Using Pseudo-Compressibility Method</title><title>Nihon Kikai Gakkai rombunshuu. B hen</title><addtitle>JSMET</addtitle><description>A numerical method using the pseudo-compressibility method is applied to the analysis of the two-dimensional flow of power-law fluids. Based on the method of lines, the rational Runge -Kutta time integration scheme is combined with the central finite difference approximation for spacial discretization. The residual averaging is incorporated into the basic scheme in order to accelerate the convergence rate to a steady-state solution. The pseudo-compressibility parameter is adjusted corresponding to Reynolds number and computational grids so that the stability of computation can be significantly enhanced especially for low-Reynolds-number flow. Two kinds of 2 to 1 contraction flow through two-dimensional passages are analyzed with power indices 0.1 ≤ n ≤ 2.0, and at Reynolds number Re=100 and Re=0.01. The numerical results for velocity and pressure gradient profiles and for shear stress at the wall are in agreement with theoretical ones.</description><subject>Approximation theory</subject><subject>Compressibility of liquids</subject><subject>Computational fluid dynamics</subject><subject>Convergence of numerical methods</subject><subject>Finite difference method</subject><subject>Integration</subject><subject>Non Newtonian liquids</subject><subject>Power-Law Fluid</subject><subject>Reynolds number</subject><subject>Shear stress</subject><issn>0387-5016</issn><issn>1884-8346</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EElVhZc4EU4oTx18jKhQQ5UMCZstxLmBw4mInqvrvSdSqbEyvdPc8J92L0FmGZ1ku5eW3_da2nDE8I4LmB2iSCVGkghTsEE0wETylOGPH6DRGW2KMJWGS8AmyT30DwRrtklfv-s76NvF18rb26bVtoI3DYNjdt8Y3qwCj7SB58WsI6VKvk4XrbRWT92jbj-QlQl_5dL5HrbPdJnmE7tNXJ-io1i7C6S6n6H1x8za_S5fPt_fzq2VqCKF5mhNdVjWXFaVlIXidcymwrIdvGMUVQElwnZVaMmBSi9pgajSnhQFcSOBakim62N5dBf_TQ-xUY6MB53QLvo-KF1QyQjgeyPN_yZwVXNCCDOBsC5rgYwxQq1WwjQ4blWE11q-29SuG1Vj_IDxsha_Y6Q_Y4zp01jjY4ZnkclToX4z2njKfOihoyS_UfJVJ</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Yanagi, Hirotoshi</creator><creator>Kurokawa, Michihiro</creator><creator>Kimura, Akio</creator><creator>Morinishi, Koji</creator><creator>Satofuka, Nobuyuki</creator><general>The Japan Society of Mechanical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TC</scope></search><sort><creationdate>1994</creationdate><title>Numerical Solution of Two-Dimensional Incompressible Power-Law Fluids Using Pseudo-Compressibility Method</title><author>Yanagi, Hirotoshi ; Kurokawa, Michihiro ; Kimura, Akio ; Morinishi, Koji ; Satofuka, Nobuyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3352-23abdf79d55b487f279809f884650deeb30f1ba96e69a8fc05ca754ce049e7a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>1994</creationdate><topic>Approximation theory</topic><topic>Compressibility of liquids</topic><topic>Computational fluid dynamics</topic><topic>Convergence of numerical methods</topic><topic>Finite difference method</topic><topic>Integration</topic><topic>Non Newtonian liquids</topic><topic>Power-Law Fluid</topic><topic>Reynolds number</topic><topic>Shear stress</topic><toplevel>online_resources</toplevel><creatorcontrib>Yanagi, Hirotoshi</creatorcontrib><creatorcontrib>Kurokawa, Michihiro</creatorcontrib><creatorcontrib>Kimura, Akio</creatorcontrib><creatorcontrib>Morinishi, Koji</creatorcontrib><creatorcontrib>Satofuka, Nobuyuki</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Nihon Kikai Gakkai rombunshuu. B hen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yanagi, Hirotoshi</au><au>Kurokawa, Michihiro</au><au>Kimura, Akio</au><au>Morinishi, Koji</au><au>Satofuka, Nobuyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Solution of Two-Dimensional Incompressible Power-Law Fluids Using Pseudo-Compressibility Method</atitle><jtitle>Nihon Kikai Gakkai rombunshuu. B hen</jtitle><addtitle>JSMET</addtitle><date>1994</date><risdate>1994</risdate><volume>60</volume><issue>579</issue><spage>3852</spage><epage>3858</epage><pages>3852-3858</pages><issn>0387-5016</issn><eissn>1884-8346</eissn><abstract>A numerical method using the pseudo-compressibility method is applied to the analysis of the two-dimensional flow of power-law fluids. Based on the method of lines, the rational Runge -Kutta time integration scheme is combined with the central finite difference approximation for spacial discretization. The residual averaging is incorporated into the basic scheme in order to accelerate the convergence rate to a steady-state solution. The pseudo-compressibility parameter is adjusted corresponding to Reynolds number and computational grids so that the stability of computation can be significantly enhanced especially for low-Reynolds-number flow. Two kinds of 2 to 1 contraction flow through two-dimensional passages are analyzed with power indices 0.1 ≤ n ≤ 2.0, and at Reynolds number Re=100 and Re=0.01. The numerical results for velocity and pressure gradient profiles and for shear stress at the wall are in agreement with theoretical ones.</abstract><pub>The Japan Society of Mechanical Engineers</pub><doi>10.1299/kikaib.60.3852</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0387-5016 |
ispartof | Transactions of the Japan Society of Mechanical Engineers Series B, 1994/11/25, Vol.60(579), pp.3852-3858 |
issn | 0387-5016 1884-8346 |
language | eng ; jpn |
recordid | cdi_proquest_miscellaneous_745963370 |
source | J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese; EZB-FREE-00999 freely available EZB journals |
subjects | Approximation theory Compressibility of liquids Computational fluid dynamics Convergence of numerical methods Finite difference method Integration Non Newtonian liquids Power-Law Fluid Reynolds number Shear stress |
title | Numerical Solution of Two-Dimensional Incompressible Power-Law Fluids Using Pseudo-Compressibility Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A37%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Solution%20of%20Two-Dimensional%20Incompressible%20Power-Law%20Fluids%20Using%20Pseudo-Compressibility%20Method&rft.jtitle=Nihon%20Kikai%20Gakkai%20rombunshuu.%20B%20hen&rft.au=Yanagi,%20Hirotoshi&rft.date=1994&rft.volume=60&rft.issue=579&rft.spage=3852&rft.epage=3858&rft.pages=3852-3858&rft.issn=0387-5016&rft.eissn=1884-8346&rft_id=info:doi/10.1299/kikaib.60.3852&rft_dat=%3Cproquest_cross%3E26478543%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26478543&rft_id=info:pmid/&rfr_iscdi=true |