Optimization of manipulator point to point motion considering actuator output capability constraints
An optimization algorithm for planning minimum time cubic polynomial joint trajectory splines, is presented. In this optimization, constraints on manipulator joint kinematics and actuator output capabilities are enforced. The contribution of this paper to the algorithm is the incorporation of the ac...
Gespeichert in:
Veröffentlicht in: | Mechanism and machine theory 1988, Vol.23 (5), p.409-419 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 419 |
---|---|
container_issue | 5 |
container_start_page | 409 |
container_title | Mechanism and machine theory |
container_volume | 23 |
creator | Podhorodeski, R.P Cleghorn, W.L |
description | An optimization algorithm for planning minimum time cubic polynomial joint trajectory splines, is presented. In this optimization, constraints on manipulator joint kinematics and actuator output capabilities are enforced. The contribution of this paper to the algorithm is the incorporation of the actuator capability constraints in the optimization.
Manipulator tasks are specified as a sequence of required end effector locations and orientations, (task spaces). Continuous motion through the task spaces is achieved through use of cubic polynomial trajectory splines at the joint level. Movement times between task spaces are optimized off-line, using a direct search technique. Enforcement of the joint constraints is achieved by scaling infeasible manipulation kinematics and dynamics through expansion of the total motion time.
Example optimizations are included. It was found that trajectory optimization considering kinematic and dynamic constraints, will produce results superior to simple time scaling of a dynamically infeasible, kinematic optimum trajectory.
Cet article décrit un algorithme optimal pour la planification des mouvements d'un manipulateur automatique. On souligne les contraintes auxquelles les joints due manipulateur sont soumis. La contribution de notre travail consiste de l'inclusion des ces contraintes dans cette optimization basée sur l'emploi de polynomes cubiques. Le travail contient aussi quelques exemples. Ces exemples indiquent des résultats supérieurs a ceux obtenus par méthodes basées seulement sur l'utilization de trajectoires cinematiques proportionels. |
doi_str_mv | 10.1016/0094-114X(88)90056-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745956776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0094114X88900560</els_id><sourcerecordid>745956776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-b7fd9b175d2e342abea5bf7b54d25215e11274b4a44ffe73fd229698599760e3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gYsuBHVRTdKkaTaCDN5gYDazcBfSXCTSJjVJBX16Oxdm6eqcxfefn_MBcIngHYKovoeQkxIh8n7TNLccQlqX8AjMUMOqsuKcH4PZATkFZyl9QggZJdUM6NWQXe9-ZXbBF8EWvfRuGDuZQyyG4HwuctgvfdhCKvjktInOfxRS5XGLhjEPYy6UHGTrOpd_tliOcgqmc3BiZZfMxX7Owfr5ab14LZerl7fF47JUVc1y2TKreYsY1dhUBMvWSNpa1lKiMcWIGoQwIy2RhFhrWGU1xrzmDeWc1dBUc3C9OzvE8DWalEXvkjJdJ70JYxKMUE5rxuqJJDtSxZBSNFYM0fUy_ggExUap2PgSG1-iacRWqYBT7GpfIJOSnY3SK5cOWQYbzAmfsIcdZqZfv52JIilnvDLaRaOy0MH93_MH4IqNTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>745956776</pqid></control><display><type>article</type><title>Optimization of manipulator point to point motion considering actuator output capability constraints</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Podhorodeski, R.P ; Cleghorn, W.L</creator><creatorcontrib>Podhorodeski, R.P ; Cleghorn, W.L</creatorcontrib><description>An optimization algorithm for planning minimum time cubic polynomial joint trajectory splines, is presented. In this optimization, constraints on manipulator joint kinematics and actuator output capabilities are enforced. The contribution of this paper to the algorithm is the incorporation of the actuator capability constraints in the optimization.
Manipulator tasks are specified as a sequence of required end effector locations and orientations, (task spaces). Continuous motion through the task spaces is achieved through use of cubic polynomial trajectory splines at the joint level. Movement times between task spaces are optimized off-line, using a direct search technique. Enforcement of the joint constraints is achieved by scaling infeasible manipulation kinematics and dynamics through expansion of the total motion time.
Example optimizations are included. It was found that trajectory optimization considering kinematic and dynamic constraints, will produce results superior to simple time scaling of a dynamically infeasible, kinematic optimum trajectory.
Cet article décrit un algorithme optimal pour la planification des mouvements d'un manipulateur automatique. On souligne les contraintes auxquelles les joints due manipulateur sont soumis. La contribution de notre travail consiste de l'inclusion des ces contraintes dans cette optimization basée sur l'emploi de polynomes cubiques. Le travail contient aussi quelques exemples. Ces exemples indiquent des résultats supérieurs a ceux obtenus par méthodes basées seulement sur l'utilization de trajectoires cinematiques proportionels.</description><identifier>ISSN: 0094-114X</identifier><identifier>EISSN: 1873-3999</identifier><identifier>DOI: 10.1016/0094-114X(88)90056-0</identifier><identifier>CODEN: MHMTAS</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>actuators ; Applied sciences ; Exact sciences and technology ; kinematics ; Material handling, hoisting. Storage. Packaging ; Transfert equipment, manipulators; industrial robots</subject><ispartof>Mechanism and machine theory, 1988, Vol.23 (5), p.409-419</ispartof><rights>1988</rights><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-b7fd9b175d2e342abea5bf7b54d25215e11274b4a44ffe73fd229698599760e3</citedby><cites>FETCH-LOGICAL-c367t-b7fd9b175d2e342abea5bf7b54d25215e11274b4a44ffe73fd229698599760e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0094-114X(88)90056-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7082949$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Podhorodeski, R.P</creatorcontrib><creatorcontrib>Cleghorn, W.L</creatorcontrib><title>Optimization of manipulator point to point motion considering actuator output capability constraints</title><title>Mechanism and machine theory</title><description>An optimization algorithm for planning minimum time cubic polynomial joint trajectory splines, is presented. In this optimization, constraints on manipulator joint kinematics and actuator output capabilities are enforced. The contribution of this paper to the algorithm is the incorporation of the actuator capability constraints in the optimization.
Manipulator tasks are specified as a sequence of required end effector locations and orientations, (task spaces). Continuous motion through the task spaces is achieved through use of cubic polynomial trajectory splines at the joint level. Movement times between task spaces are optimized off-line, using a direct search technique. Enforcement of the joint constraints is achieved by scaling infeasible manipulation kinematics and dynamics through expansion of the total motion time.
Example optimizations are included. It was found that trajectory optimization considering kinematic and dynamic constraints, will produce results superior to simple time scaling of a dynamically infeasible, kinematic optimum trajectory.
Cet article décrit un algorithme optimal pour la planification des mouvements d'un manipulateur automatique. On souligne les contraintes auxquelles les joints due manipulateur sont soumis. La contribution de notre travail consiste de l'inclusion des ces contraintes dans cette optimization basée sur l'emploi de polynomes cubiques. Le travail contient aussi quelques exemples. Ces exemples indiquent des résultats supérieurs a ceux obtenus par méthodes basées seulement sur l'utilization de trajectoires cinematiques proportionels.</description><subject>actuators</subject><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>kinematics</subject><subject>Material handling, hoisting. Storage. Packaging</subject><subject>Transfert equipment, manipulators; industrial robots</subject><issn>0094-114X</issn><issn>1873-3999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gYsuBHVRTdKkaTaCDN5gYDazcBfSXCTSJjVJBX16Oxdm6eqcxfefn_MBcIngHYKovoeQkxIh8n7TNLccQlqX8AjMUMOqsuKcH4PZATkFZyl9QggZJdUM6NWQXe9-ZXbBF8EWvfRuGDuZQyyG4HwuctgvfdhCKvjktInOfxRS5XGLhjEPYy6UHGTrOpd_tliOcgqmc3BiZZfMxX7Owfr5ab14LZerl7fF47JUVc1y2TKreYsY1dhUBMvWSNpa1lKiMcWIGoQwIy2RhFhrWGU1xrzmDeWc1dBUc3C9OzvE8DWalEXvkjJdJ70JYxKMUE5rxuqJJDtSxZBSNFYM0fUy_ggExUap2PgSG1-iacRWqYBT7GpfIJOSnY3SK5cOWQYbzAmfsIcdZqZfv52JIilnvDLaRaOy0MH93_MH4IqNTQ</recordid><startdate>1988</startdate><enddate>1988</enddate><creator>Podhorodeski, R.P</creator><creator>Cleghorn, W.L</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>1988</creationdate><title>Optimization of manipulator point to point motion considering actuator output capability constraints</title><author>Podhorodeski, R.P ; Cleghorn, W.L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-b7fd9b175d2e342abea5bf7b54d25215e11274b4a44ffe73fd229698599760e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>actuators</topic><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>kinematics</topic><topic>Material handling, hoisting. Storage. Packaging</topic><topic>Transfert equipment, manipulators; industrial robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Podhorodeski, R.P</creatorcontrib><creatorcontrib>Cleghorn, W.L</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Mechanism and machine theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Podhorodeski, R.P</au><au>Cleghorn, W.L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of manipulator point to point motion considering actuator output capability constraints</atitle><jtitle>Mechanism and machine theory</jtitle><date>1988</date><risdate>1988</risdate><volume>23</volume><issue>5</issue><spage>409</spage><epage>419</epage><pages>409-419</pages><issn>0094-114X</issn><eissn>1873-3999</eissn><coden>MHMTAS</coden><abstract>An optimization algorithm for planning minimum time cubic polynomial joint trajectory splines, is presented. In this optimization, constraints on manipulator joint kinematics and actuator output capabilities are enforced. The contribution of this paper to the algorithm is the incorporation of the actuator capability constraints in the optimization.
Manipulator tasks are specified as a sequence of required end effector locations and orientations, (task spaces). Continuous motion through the task spaces is achieved through use of cubic polynomial trajectory splines at the joint level. Movement times between task spaces are optimized off-line, using a direct search technique. Enforcement of the joint constraints is achieved by scaling infeasible manipulation kinematics and dynamics through expansion of the total motion time.
Example optimizations are included. It was found that trajectory optimization considering kinematic and dynamic constraints, will produce results superior to simple time scaling of a dynamically infeasible, kinematic optimum trajectory.
Cet article décrit un algorithme optimal pour la planification des mouvements d'un manipulateur automatique. On souligne les contraintes auxquelles les joints due manipulateur sont soumis. La contribution de notre travail consiste de l'inclusion des ces contraintes dans cette optimization basée sur l'emploi de polynomes cubiques. Le travail contient aussi quelques exemples. Ces exemples indiquent des résultats supérieurs a ceux obtenus par méthodes basées seulement sur l'utilization de trajectoires cinematiques proportionels.</abstract><cop>Oxford</cop><cop>New York, NY</cop><pub>Elsevier Ltd</pub><doi>10.1016/0094-114X(88)90056-0</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-114X |
ispartof | Mechanism and machine theory, 1988, Vol.23 (5), p.409-419 |
issn | 0094-114X 1873-3999 |
language | eng |
recordid | cdi_proquest_miscellaneous_745956776 |
source | Elsevier ScienceDirect Journals Complete |
subjects | actuators Applied sciences Exact sciences and technology kinematics Material handling, hoisting. Storage. Packaging Transfert equipment, manipulators industrial robots |
title | Optimization of manipulator point to point motion considering actuator output capability constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20manipulator%20point%20to%20point%20motion%20considering%20actuator%20output%20capability%20constraints&rft.jtitle=Mechanism%20and%20machine%20theory&rft.au=Podhorodeski,%20R.P&rft.date=1988&rft.volume=23&rft.issue=5&rft.spage=409&rft.epage=419&rft.pages=409-419&rft.issn=0094-114X&rft.eissn=1873-3999&rft.coden=MHMTAS&rft_id=info:doi/10.1016/0094-114X(88)90056-0&rft_dat=%3Cproquest_cross%3E745956776%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=745956776&rft_id=info:pmid/&rft_els_id=0094114X88900560&rfr_iscdi=true |