Optimization of manipulator point to point motion considering actuator output capability constraints

An optimization algorithm for planning minimum time cubic polynomial joint trajectory splines, is presented. In this optimization, constraints on manipulator joint kinematics and actuator output capabilities are enforced. The contribution of this paper to the algorithm is the incorporation of the ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanism and machine theory 1988, Vol.23 (5), p.409-419
Hauptverfasser: Podhorodeski, R.P, Cleghorn, W.L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 419
container_issue 5
container_start_page 409
container_title Mechanism and machine theory
container_volume 23
creator Podhorodeski, R.P
Cleghorn, W.L
description An optimization algorithm for planning minimum time cubic polynomial joint trajectory splines, is presented. In this optimization, constraints on manipulator joint kinematics and actuator output capabilities are enforced. The contribution of this paper to the algorithm is the incorporation of the actuator capability constraints in the optimization. Manipulator tasks are specified as a sequence of required end effector locations and orientations, (task spaces). Continuous motion through the task spaces is achieved through use of cubic polynomial trajectory splines at the joint level. Movement times between task spaces are optimized off-line, using a direct search technique. Enforcement of the joint constraints is achieved by scaling infeasible manipulation kinematics and dynamics through expansion of the total motion time. Example optimizations are included. It was found that trajectory optimization considering kinematic and dynamic constraints, will produce results superior to simple time scaling of a dynamically infeasible, kinematic optimum trajectory. Cet article décrit un algorithme optimal pour la planification des mouvements d'un manipulateur automatique. On souligne les contraintes auxquelles les joints due manipulateur sont soumis. La contribution de notre travail consiste de l'inclusion des ces contraintes dans cette optimization basée sur l'emploi de polynomes cubiques. Le travail contient aussi quelques exemples. Ces exemples indiquent des résultats supérieurs a ceux obtenus par méthodes basées seulement sur l'utilization de trajectoires cinematiques proportionels.
doi_str_mv 10.1016/0094-114X(88)90056-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745956776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0094114X88900560</els_id><sourcerecordid>745956776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-b7fd9b175d2e342abea5bf7b54d25215e11274b4a44ffe73fd229698599760e3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gYsuBHVRTdKkaTaCDN5gYDazcBfSXCTSJjVJBX16Oxdm6eqcxfefn_MBcIngHYKovoeQkxIh8n7TNLccQlqX8AjMUMOqsuKcH4PZATkFZyl9QggZJdUM6NWQXe9-ZXbBF8EWvfRuGDuZQyyG4HwuctgvfdhCKvjktInOfxRS5XGLhjEPYy6UHGTrOpd_tliOcgqmc3BiZZfMxX7Owfr5ab14LZerl7fF47JUVc1y2TKreYsY1dhUBMvWSNpa1lKiMcWIGoQwIy2RhFhrWGU1xrzmDeWc1dBUc3C9OzvE8DWalEXvkjJdJ70JYxKMUE5rxuqJJDtSxZBSNFYM0fUy_ggExUap2PgSG1-iacRWqYBT7GpfIJOSnY3SK5cOWQYbzAmfsIcdZqZfv52JIilnvDLaRaOy0MH93_MH4IqNTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>745956776</pqid></control><display><type>article</type><title>Optimization of manipulator point to point motion considering actuator output capability constraints</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Podhorodeski, R.P ; Cleghorn, W.L</creator><creatorcontrib>Podhorodeski, R.P ; Cleghorn, W.L</creatorcontrib><description>An optimization algorithm for planning minimum time cubic polynomial joint trajectory splines, is presented. In this optimization, constraints on manipulator joint kinematics and actuator output capabilities are enforced. The contribution of this paper to the algorithm is the incorporation of the actuator capability constraints in the optimization. Manipulator tasks are specified as a sequence of required end effector locations and orientations, (task spaces). Continuous motion through the task spaces is achieved through use of cubic polynomial trajectory splines at the joint level. Movement times between task spaces are optimized off-line, using a direct search technique. Enforcement of the joint constraints is achieved by scaling infeasible manipulation kinematics and dynamics through expansion of the total motion time. Example optimizations are included. It was found that trajectory optimization considering kinematic and dynamic constraints, will produce results superior to simple time scaling of a dynamically infeasible, kinematic optimum trajectory. Cet article décrit un algorithme optimal pour la planification des mouvements d'un manipulateur automatique. On souligne les contraintes auxquelles les joints due manipulateur sont soumis. La contribution de notre travail consiste de l'inclusion des ces contraintes dans cette optimization basée sur l'emploi de polynomes cubiques. Le travail contient aussi quelques exemples. Ces exemples indiquent des résultats supérieurs a ceux obtenus par méthodes basées seulement sur l'utilization de trajectoires cinematiques proportionels.</description><identifier>ISSN: 0094-114X</identifier><identifier>EISSN: 1873-3999</identifier><identifier>DOI: 10.1016/0094-114X(88)90056-0</identifier><identifier>CODEN: MHMTAS</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>actuators ; Applied sciences ; Exact sciences and technology ; kinematics ; Material handling, hoisting. Storage. Packaging ; Transfert equipment, manipulators; industrial robots</subject><ispartof>Mechanism and machine theory, 1988, Vol.23 (5), p.409-419</ispartof><rights>1988</rights><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-b7fd9b175d2e342abea5bf7b54d25215e11274b4a44ffe73fd229698599760e3</citedby><cites>FETCH-LOGICAL-c367t-b7fd9b175d2e342abea5bf7b54d25215e11274b4a44ffe73fd229698599760e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0094-114X(88)90056-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7082949$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Podhorodeski, R.P</creatorcontrib><creatorcontrib>Cleghorn, W.L</creatorcontrib><title>Optimization of manipulator point to point motion considering actuator output capability constraints</title><title>Mechanism and machine theory</title><description>An optimization algorithm for planning minimum time cubic polynomial joint trajectory splines, is presented. In this optimization, constraints on manipulator joint kinematics and actuator output capabilities are enforced. The contribution of this paper to the algorithm is the incorporation of the actuator capability constraints in the optimization. Manipulator tasks are specified as a sequence of required end effector locations and orientations, (task spaces). Continuous motion through the task spaces is achieved through use of cubic polynomial trajectory splines at the joint level. Movement times between task spaces are optimized off-line, using a direct search technique. Enforcement of the joint constraints is achieved by scaling infeasible manipulation kinematics and dynamics through expansion of the total motion time. Example optimizations are included. It was found that trajectory optimization considering kinematic and dynamic constraints, will produce results superior to simple time scaling of a dynamically infeasible, kinematic optimum trajectory. Cet article décrit un algorithme optimal pour la planification des mouvements d'un manipulateur automatique. On souligne les contraintes auxquelles les joints due manipulateur sont soumis. La contribution de notre travail consiste de l'inclusion des ces contraintes dans cette optimization basée sur l'emploi de polynomes cubiques. Le travail contient aussi quelques exemples. Ces exemples indiquent des résultats supérieurs a ceux obtenus par méthodes basées seulement sur l'utilization de trajectoires cinematiques proportionels.</description><subject>actuators</subject><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>kinematics</subject><subject>Material handling, hoisting. Storage. Packaging</subject><subject>Transfert equipment, manipulators; industrial robots</subject><issn>0094-114X</issn><issn>1873-3999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gYsuBHVRTdKkaTaCDN5gYDazcBfSXCTSJjVJBX16Oxdm6eqcxfefn_MBcIngHYKovoeQkxIh8n7TNLccQlqX8AjMUMOqsuKcH4PZATkFZyl9QggZJdUM6NWQXe9-ZXbBF8EWvfRuGDuZQyyG4HwuctgvfdhCKvjktInOfxRS5XGLhjEPYy6UHGTrOpd_tliOcgqmc3BiZZfMxX7Owfr5ab14LZerl7fF47JUVc1y2TKreYsY1dhUBMvWSNpa1lKiMcWIGoQwIy2RhFhrWGU1xrzmDeWc1dBUc3C9OzvE8DWalEXvkjJdJ70JYxKMUE5rxuqJJDtSxZBSNFYM0fUy_ggExUap2PgSG1-iacRWqYBT7GpfIJOSnY3SK5cOWQYbzAmfsIcdZqZfv52JIilnvDLaRaOy0MH93_MH4IqNTQ</recordid><startdate>1988</startdate><enddate>1988</enddate><creator>Podhorodeski, R.P</creator><creator>Cleghorn, W.L</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>1988</creationdate><title>Optimization of manipulator point to point motion considering actuator output capability constraints</title><author>Podhorodeski, R.P ; Cleghorn, W.L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-b7fd9b175d2e342abea5bf7b54d25215e11274b4a44ffe73fd229698599760e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>actuators</topic><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>kinematics</topic><topic>Material handling, hoisting. Storage. Packaging</topic><topic>Transfert equipment, manipulators; industrial robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Podhorodeski, R.P</creatorcontrib><creatorcontrib>Cleghorn, W.L</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Mechanism and machine theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Podhorodeski, R.P</au><au>Cleghorn, W.L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of manipulator point to point motion considering actuator output capability constraints</atitle><jtitle>Mechanism and machine theory</jtitle><date>1988</date><risdate>1988</risdate><volume>23</volume><issue>5</issue><spage>409</spage><epage>419</epage><pages>409-419</pages><issn>0094-114X</issn><eissn>1873-3999</eissn><coden>MHMTAS</coden><abstract>An optimization algorithm for planning minimum time cubic polynomial joint trajectory splines, is presented. In this optimization, constraints on manipulator joint kinematics and actuator output capabilities are enforced. The contribution of this paper to the algorithm is the incorporation of the actuator capability constraints in the optimization. Manipulator tasks are specified as a sequence of required end effector locations and orientations, (task spaces). Continuous motion through the task spaces is achieved through use of cubic polynomial trajectory splines at the joint level. Movement times between task spaces are optimized off-line, using a direct search technique. Enforcement of the joint constraints is achieved by scaling infeasible manipulation kinematics and dynamics through expansion of the total motion time. Example optimizations are included. It was found that trajectory optimization considering kinematic and dynamic constraints, will produce results superior to simple time scaling of a dynamically infeasible, kinematic optimum trajectory. Cet article décrit un algorithme optimal pour la planification des mouvements d'un manipulateur automatique. On souligne les contraintes auxquelles les joints due manipulateur sont soumis. La contribution de notre travail consiste de l'inclusion des ces contraintes dans cette optimization basée sur l'emploi de polynomes cubiques. Le travail contient aussi quelques exemples. Ces exemples indiquent des résultats supérieurs a ceux obtenus par méthodes basées seulement sur l'utilization de trajectoires cinematiques proportionels.</abstract><cop>Oxford</cop><cop>New York, NY</cop><pub>Elsevier Ltd</pub><doi>10.1016/0094-114X(88)90056-0</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-114X
ispartof Mechanism and machine theory, 1988, Vol.23 (5), p.409-419
issn 0094-114X
1873-3999
language eng
recordid cdi_proquest_miscellaneous_745956776
source Elsevier ScienceDirect Journals Complete
subjects actuators
Applied sciences
Exact sciences and technology
kinematics
Material handling, hoisting. Storage. Packaging
Transfert equipment, manipulators
industrial robots
title Optimization of manipulator point to point motion considering actuator output capability constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20manipulator%20point%20to%20point%20motion%20considering%20actuator%20output%20capability%20constraints&rft.jtitle=Mechanism%20and%20machine%20theory&rft.au=Podhorodeski,%20R.P&rft.date=1988&rft.volume=23&rft.issue=5&rft.spage=409&rft.epage=419&rft.pages=409-419&rft.issn=0094-114X&rft.eissn=1873-3999&rft.coden=MHMTAS&rft_id=info:doi/10.1016/0094-114X(88)90056-0&rft_dat=%3Cproquest_cross%3E745956776%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=745956776&rft_id=info:pmid/&rft_els_id=0094114X88900560&rfr_iscdi=true