Numerical asymptotic solution of strength and vibrations problems of thin shells of revolution
For thin shells of revolution whose middle surface has a nonnegative Gaussian curvature, a numerical analytical approximate solution is constructed for the class of linear boundary-value problems allowing of separation of variables.
Gespeichert in:
Veröffentlicht in: | Journal of applied mechanics and technical physics 1984, Vol.24 (2), p.256-260 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 260 |
---|---|
container_issue | 2 |
container_start_page | 256 |
container_title | Journal of applied mechanics and technical physics |
container_volume | 24 |
creator | Stepanenko, S. V. |
description | For thin shells of revolution whose middle surface has a nonnegative Gaussian curvature, a numerical analytical approximate solution is constructed for the class of linear boundary-value problems allowing of separation of variables. |
doi_str_mv | 10.1007/BF00910697 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745951936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>745951936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c137t-b85fd8ff7b17567ab10b8e3be8309f1817e7b98c19edc849a4c21ec67823ff273</originalsourceid><addsrcrecordid>eNpFkE1LAzEURYMoWKsbf0F2gjCaTGYmyVKLVaHoRrcOSfpiI_NR8zKF_vtObcHV4_IOl8Ml5JqzO86YvH-cM6Y5q7Q8IRNeSpGpKmenZMJYzjOli-KcXCD-sBFTXE7I19vQQgzONNTgtl2nPgVHsW-GFPqO9p5iitB9pxU13ZJugo1m_0G6jr1toMU9k1aho7iCpvmLETbHgkty5k2DcHW8U_I5f_qYvWSL9-fX2cMic1zIlFlV-qXyXlouy0oay5lVICwowbTnoylIq5XjGpZOFdoULufgKqly4X0uxZTcHHpHq98BMNVtQDf6mA76AWtZlLrkWlQjeXsgXewRI_h6HUNr4rbmrN5vWP9vKHbQAmWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>745951936</pqid></control><display><type>article</type><title>Numerical asymptotic solution of strength and vibrations problems of thin shells of revolution</title><source>Springer Nature - Complete Springer Journals</source><creator>Stepanenko, S. V.</creator><creatorcontrib>Stepanenko, S. V.</creatorcontrib><description>For thin shells of revolution whose middle surface has a nonnegative Gaussian curvature, a numerical analytical approximate solution is constructed for the class of linear boundary-value problems allowing of separation of variables.</description><identifier>ISSN: 0021-8944</identifier><identifier>EISSN: 1573-8620</identifier><identifier>DOI: 10.1007/BF00910697</identifier><language>eng</language><subject>mechanical strength ; numerical analysis ; shells ; surface properties ; vibration</subject><ispartof>Journal of applied mechanics and technical physics, 1984, Vol.24 (2), p.256-260</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c137t-b85fd8ff7b17567ab10b8e3be8309f1817e7b98c19edc849a4c21ec67823ff273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>Stepanenko, S. V.</creatorcontrib><title>Numerical asymptotic solution of strength and vibrations problems of thin shells of revolution</title><title>Journal of applied mechanics and technical physics</title><description>For thin shells of revolution whose middle surface has a nonnegative Gaussian curvature, a numerical analytical approximate solution is constructed for the class of linear boundary-value problems allowing of separation of variables.</description><subject>mechanical strength</subject><subject>numerical analysis</subject><subject>shells</subject><subject>surface properties</subject><subject>vibration</subject><issn>0021-8944</issn><issn>1573-8620</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEURYMoWKsbf0F2gjCaTGYmyVKLVaHoRrcOSfpiI_NR8zKF_vtObcHV4_IOl8Ml5JqzO86YvH-cM6Y5q7Q8IRNeSpGpKmenZMJYzjOli-KcXCD-sBFTXE7I19vQQgzONNTgtl2nPgVHsW-GFPqO9p5iitB9pxU13ZJugo1m_0G6jr1toMU9k1aho7iCpvmLETbHgkty5k2DcHW8U_I5f_qYvWSL9-fX2cMic1zIlFlV-qXyXlouy0oay5lVICwowbTnoylIq5XjGpZOFdoULufgKqly4X0uxZTcHHpHq98BMNVtQDf6mA76AWtZlLrkWlQjeXsgXewRI_h6HUNr4rbmrN5vWP9vKHbQAmWw</recordid><startdate>1984</startdate><enddate>1984</enddate><creator>Stepanenko, S. V.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>1984</creationdate><title>Numerical asymptotic solution of strength and vibrations problems of thin shells of revolution</title><author>Stepanenko, S. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c137t-b85fd8ff7b17567ab10b8e3be8309f1817e7b98c19edc849a4c21ec67823ff273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>mechanical strength</topic><topic>numerical analysis</topic><topic>shells</topic><topic>surface properties</topic><topic>vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stepanenko, S. V.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Journal of applied mechanics and technical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stepanenko, S. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical asymptotic solution of strength and vibrations problems of thin shells of revolution</atitle><jtitle>Journal of applied mechanics and technical physics</jtitle><date>1984</date><risdate>1984</risdate><volume>24</volume><issue>2</issue><spage>256</spage><epage>260</epage><pages>256-260</pages><issn>0021-8944</issn><eissn>1573-8620</eissn><abstract>For thin shells of revolution whose middle surface has a nonnegative Gaussian curvature, a numerical analytical approximate solution is constructed for the class of linear boundary-value problems allowing of separation of variables.</abstract><doi>10.1007/BF00910697</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8944 |
ispartof | Journal of applied mechanics and technical physics, 1984, Vol.24 (2), p.256-260 |
issn | 0021-8944 1573-8620 |
language | eng |
recordid | cdi_proquest_miscellaneous_745951936 |
source | Springer Nature - Complete Springer Journals |
subjects | mechanical strength numerical analysis shells surface properties vibration |
title | Numerical asymptotic solution of strength and vibrations problems of thin shells of revolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A48%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20asymptotic%20solution%20of%20strength%20and%20vibrations%20problems%20of%20thin%20shells%20of%20revolution&rft.jtitle=Journal%20of%20applied%20mechanics%20and%20technical%20physics&rft.au=Stepanenko,%20S.%20V.&rft.date=1984&rft.volume=24&rft.issue=2&rft.spage=256&rft.epage=260&rft.pages=256-260&rft.issn=0021-8944&rft.eissn=1573-8620&rft_id=info:doi/10.1007/BF00910697&rft_dat=%3Cproquest_cross%3E745951936%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=745951936&rft_id=info:pmid/&rfr_iscdi=true |