Intelligent tool path generation for milling of free surfaces using neural networks
The presented paper has an intention to show how with the help of Artificial Neural Network (ANN), the prediction of milling tool-path strategy could be made in order to establish which milling path strategy or their sequence will show the best results (will be the most appropriate) at free surface...
Gespeichert in:
Veröffentlicht in: | International journal of machine tools & manufacture 2002-08, Vol.42 (10), p.1171-1179 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1179 |
---|---|
container_issue | 10 |
container_start_page | 1171 |
container_title | International journal of machine tools & manufacture |
container_volume | 42 |
creator | Balic, J Korosec, M |
description | The presented paper has an intention to show how with the help of Artificial Neural Network (ANN), the prediction of milling tool-path strategy could be made in order to establish which milling path strategy or their sequence will show the best results (will be the most appropriate) at free surface machining, according to set technological aim. In our case the best possible surface quality of machined surface was taken as the primary technological aim. Configuration of used Neural Network (NN) is presented, and the whole procedure is shown on an example of mould, for producing light switches. The verification of machined surface quality, according to average mean roughness,
R
a, is also being done, and compared with the NN predicted results. |
doi_str_mv | 10.1016/S0890-6955(02)00045-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745945306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0890695502000457</els_id><sourcerecordid>745945306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-7476bc74e8073d4ebd586240f61afe32b8729af39bbe3761d1d9f5de38a850463</originalsourceid><addsrcrecordid>eNqFkE1P3DAQhq2KSizQn4DkCxQOoePYjpNTVSG-JCQOtGfLccbUkI0X26Hqv8fLIrjBaTSj553RPITsMzhhwJoft9B2UDWdlEdQHwOAkJX6QhasVV1VMwVbZPGGbJOdlO4LxFrOFuT2aso4jv4Op0xzCCNdmfyXlhajyT5M1IVIl74g0x0NjrqISNMcnbGY6JzW4wnnaMZS8r8QH9Ie-erMmPDba90lf87Pfp9eVtc3F1env64rKwBypYRqeqsEtqD4ILAfZNvUAlzDjENe962qO-N41_fIVcMGNnRODshb00oQDd8l3zd7VzE8zpiyXvpkyzdmwjAnrYTshOSwJg8_JGslO143rIByA9oYUoro9Cr6pYn_NQO9lq1fZOu1SQ21fpGtVckdvB4wyZrRRTNZn97DvISEgML93HBYvDx5jDpZj5PFwUe0WQ_Bf3LpGYu1k7Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27593261</pqid></control><display><type>article</type><title>Intelligent tool path generation for milling of free surfaces using neural networks</title><source>Access via ScienceDirect (Elsevier)</source><creator>Balic, J ; Korosec, M</creator><creatorcontrib>Balic, J ; Korosec, M</creatorcontrib><description>The presented paper has an intention to show how with the help of Artificial Neural Network (ANN), the prediction of milling tool-path strategy could be made in order to establish which milling path strategy or their sequence will show the best results (will be the most appropriate) at free surface machining, according to set technological aim. In our case the best possible surface quality of machined surface was taken as the primary technological aim. Configuration of used Neural Network (NN) is presented, and the whole procedure is shown on an example of mould, for producing light switches. The verification of machined surface quality, according to average mean roughness,
R
a, is also being done, and compared with the NN predicted results.</description><identifier>ISSN: 0890-6955</identifier><identifier>EISSN: 1879-2170</identifier><identifier>DOI: 10.1016/S0890-6955(02)00045-7</identifier><identifier>CODEN: IMTME3</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; CAD/CAM system ; CAPP ; Computer aided design ; Computer aided manufacturing ; Computer science; control theory; systems ; Electric switches ; Exact sciences and technology ; ICAM ; Mechanical engineering. Machine design ; Milling strategy ; Neural network ; Neural networks ; Software ; Surface roughness</subject><ispartof>International journal of machine tools & manufacture, 2002-08, Vol.42 (10), p.1171-1179</ispartof><rights>2002 Elsevier Science Ltd</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-7476bc74e8073d4ebd586240f61afe32b8729af39bbe3761d1d9f5de38a850463</citedby><cites>FETCH-LOGICAL-c400t-7476bc74e8073d4ebd586240f61afe32b8729af39bbe3761d1d9f5de38a850463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0890-6955(02)00045-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13890440$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Balic, J</creatorcontrib><creatorcontrib>Korosec, M</creatorcontrib><title>Intelligent tool path generation for milling of free surfaces using neural networks</title><title>International journal of machine tools & manufacture</title><description>The presented paper has an intention to show how with the help of Artificial Neural Network (ANN), the prediction of milling tool-path strategy could be made in order to establish which milling path strategy or their sequence will show the best results (will be the most appropriate) at free surface machining, according to set technological aim. In our case the best possible surface quality of machined surface was taken as the primary technological aim. Configuration of used Neural Network (NN) is presented, and the whole procedure is shown on an example of mould, for producing light switches. The verification of machined surface quality, according to average mean roughness,
R
a, is also being done, and compared with the NN predicted results.</description><subject>Applied sciences</subject><subject>CAD/CAM system</subject><subject>CAPP</subject><subject>Computer aided design</subject><subject>Computer aided manufacturing</subject><subject>Computer science; control theory; systems</subject><subject>Electric switches</subject><subject>Exact sciences and technology</subject><subject>ICAM</subject><subject>Mechanical engineering. Machine design</subject><subject>Milling strategy</subject><subject>Neural network</subject><subject>Neural networks</subject><subject>Software</subject><subject>Surface roughness</subject><issn>0890-6955</issn><issn>1879-2170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1P3DAQhq2KSizQn4DkCxQOoePYjpNTVSG-JCQOtGfLccbUkI0X26Hqv8fLIrjBaTSj553RPITsMzhhwJoft9B2UDWdlEdQHwOAkJX6QhasVV1VMwVbZPGGbJOdlO4LxFrOFuT2aso4jv4Op0xzCCNdmfyXlhajyT5M1IVIl74g0x0NjrqISNMcnbGY6JzW4wnnaMZS8r8QH9Ie-erMmPDba90lf87Pfp9eVtc3F1env64rKwBypYRqeqsEtqD4ILAfZNvUAlzDjENe962qO-N41_fIVcMGNnRODshb00oQDd8l3zd7VzE8zpiyXvpkyzdmwjAnrYTshOSwJg8_JGslO143rIByA9oYUoro9Cr6pYn_NQO9lq1fZOu1SQ21fpGtVckdvB4wyZrRRTNZn97DvISEgML93HBYvDx5jDpZj5PFwUe0WQ_Bf3LpGYu1k7Y</recordid><startdate>20020801</startdate><enddate>20020801</enddate><creator>Balic, J</creator><creator>Korosec, M</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>7TC</scope></search><sort><creationdate>20020801</creationdate><title>Intelligent tool path generation for milling of free surfaces using neural networks</title><author>Balic, J ; Korosec, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-7476bc74e8073d4ebd586240f61afe32b8729af39bbe3761d1d9f5de38a850463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>CAD/CAM system</topic><topic>CAPP</topic><topic>Computer aided design</topic><topic>Computer aided manufacturing</topic><topic>Computer science; control theory; systems</topic><topic>Electric switches</topic><topic>Exact sciences and technology</topic><topic>ICAM</topic><topic>Mechanical engineering. Machine design</topic><topic>Milling strategy</topic><topic>Neural network</topic><topic>Neural networks</topic><topic>Software</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balic, J</creatorcontrib><creatorcontrib>Korosec, M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>International journal of machine tools & manufacture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balic, J</au><au>Korosec, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent tool path generation for milling of free surfaces using neural networks</atitle><jtitle>International journal of machine tools & manufacture</jtitle><date>2002-08-01</date><risdate>2002</risdate><volume>42</volume><issue>10</issue><spage>1171</spage><epage>1179</epage><pages>1171-1179</pages><issn>0890-6955</issn><eissn>1879-2170</eissn><coden>IMTME3</coden><abstract>The presented paper has an intention to show how with the help of Artificial Neural Network (ANN), the prediction of milling tool-path strategy could be made in order to establish which milling path strategy or their sequence will show the best results (will be the most appropriate) at free surface machining, according to set technological aim. In our case the best possible surface quality of machined surface was taken as the primary technological aim. Configuration of used Neural Network (NN) is presented, and the whole procedure is shown on an example of mould, for producing light switches. The verification of machined surface quality, according to average mean roughness,
R
a, is also being done, and compared with the NN predicted results.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0890-6955(02)00045-7</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0890-6955 |
ispartof | International journal of machine tools & manufacture, 2002-08, Vol.42 (10), p.1171-1179 |
issn | 0890-6955 1879-2170 |
language | eng |
recordid | cdi_proquest_miscellaneous_745945306 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences CAD/CAM system CAPP Computer aided design Computer aided manufacturing Computer science control theory systems Electric switches Exact sciences and technology ICAM Mechanical engineering. Machine design Milling strategy Neural network Neural networks Software Surface roughness |
title | Intelligent tool path generation for milling of free surfaces using neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T23%3A30%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20tool%20path%20generation%20for%20milling%20of%20free%20surfaces%20using%20neural%20networks&rft.jtitle=International%20journal%20of%20machine%20tools%20&%20manufacture&rft.au=Balic,%20J&rft.date=2002-08-01&rft.volume=42&rft.issue=10&rft.spage=1171&rft.epage=1179&rft.pages=1171-1179&rft.issn=0890-6955&rft.eissn=1879-2170&rft.coden=IMTME3&rft_id=info:doi/10.1016/S0890-6955(02)00045-7&rft_dat=%3Cproquest_cross%3E745945306%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27593261&rft_id=info:pmid/&rft_els_id=S0890695502000457&rfr_iscdi=true |