Intelligent tool path generation for milling of free surfaces using neural networks

The presented paper has an intention to show how with the help of Artificial Neural Network (ANN), the prediction of milling tool-path strategy could be made in order to establish which milling path strategy or their sequence will show the best results (will be the most appropriate) at free surface...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of machine tools & manufacture 2002-08, Vol.42 (10), p.1171-1179
Hauptverfasser: Balic, J, Korosec, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1179
container_issue 10
container_start_page 1171
container_title International journal of machine tools & manufacture
container_volume 42
creator Balic, J
Korosec, M
description The presented paper has an intention to show how with the help of Artificial Neural Network (ANN), the prediction of milling tool-path strategy could be made in order to establish which milling path strategy or their sequence will show the best results (will be the most appropriate) at free surface machining, according to set technological aim. In our case the best possible surface quality of machined surface was taken as the primary technological aim. Configuration of used Neural Network (NN) is presented, and the whole procedure is shown on an example of mould, for producing light switches. The verification of machined surface quality, according to average mean roughness, R a, is also being done, and compared with the NN predicted results.
doi_str_mv 10.1016/S0890-6955(02)00045-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745945306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0890695502000457</els_id><sourcerecordid>745945306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-7476bc74e8073d4ebd586240f61afe32b8729af39bbe3761d1d9f5de38a850463</originalsourceid><addsrcrecordid>eNqFkE1P3DAQhq2KSizQn4DkCxQOoePYjpNTVSG-JCQOtGfLccbUkI0X26Hqv8fLIrjBaTSj553RPITsMzhhwJoft9B2UDWdlEdQHwOAkJX6QhasVV1VMwVbZPGGbJOdlO4LxFrOFuT2aso4jv4Op0xzCCNdmfyXlhajyT5M1IVIl74g0x0NjrqISNMcnbGY6JzW4wnnaMZS8r8QH9Ie-erMmPDba90lf87Pfp9eVtc3F1env64rKwBypYRqeqsEtqD4ILAfZNvUAlzDjENe962qO-N41_fIVcMGNnRODshb00oQDd8l3zd7VzE8zpiyXvpkyzdmwjAnrYTshOSwJg8_JGslO143rIByA9oYUoro9Cr6pYn_NQO9lq1fZOu1SQ21fpGtVckdvB4wyZrRRTNZn97DvISEgML93HBYvDx5jDpZj5PFwUe0WQ_Bf3LpGYu1k7Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27593261</pqid></control><display><type>article</type><title>Intelligent tool path generation for milling of free surfaces using neural networks</title><source>Access via ScienceDirect (Elsevier)</source><creator>Balic, J ; Korosec, M</creator><creatorcontrib>Balic, J ; Korosec, M</creatorcontrib><description>The presented paper has an intention to show how with the help of Artificial Neural Network (ANN), the prediction of milling tool-path strategy could be made in order to establish which milling path strategy or their sequence will show the best results (will be the most appropriate) at free surface machining, according to set technological aim. In our case the best possible surface quality of machined surface was taken as the primary technological aim. Configuration of used Neural Network (NN) is presented, and the whole procedure is shown on an example of mould, for producing light switches. The verification of machined surface quality, according to average mean roughness, R a, is also being done, and compared with the NN predicted results.</description><identifier>ISSN: 0890-6955</identifier><identifier>EISSN: 1879-2170</identifier><identifier>DOI: 10.1016/S0890-6955(02)00045-7</identifier><identifier>CODEN: IMTME3</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; CAD/CAM system ; CAPP ; Computer aided design ; Computer aided manufacturing ; Computer science; control theory; systems ; Electric switches ; Exact sciences and technology ; ICAM ; Mechanical engineering. Machine design ; Milling strategy ; Neural network ; Neural networks ; Software ; Surface roughness</subject><ispartof>International journal of machine tools &amp; manufacture, 2002-08, Vol.42 (10), p.1171-1179</ispartof><rights>2002 Elsevier Science Ltd</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-7476bc74e8073d4ebd586240f61afe32b8729af39bbe3761d1d9f5de38a850463</citedby><cites>FETCH-LOGICAL-c400t-7476bc74e8073d4ebd586240f61afe32b8729af39bbe3761d1d9f5de38a850463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0890-6955(02)00045-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13890440$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Balic, J</creatorcontrib><creatorcontrib>Korosec, M</creatorcontrib><title>Intelligent tool path generation for milling of free surfaces using neural networks</title><title>International journal of machine tools &amp; manufacture</title><description>The presented paper has an intention to show how with the help of Artificial Neural Network (ANN), the prediction of milling tool-path strategy could be made in order to establish which milling path strategy or their sequence will show the best results (will be the most appropriate) at free surface machining, according to set technological aim. In our case the best possible surface quality of machined surface was taken as the primary technological aim. Configuration of used Neural Network (NN) is presented, and the whole procedure is shown on an example of mould, for producing light switches. The verification of machined surface quality, according to average mean roughness, R a, is also being done, and compared with the NN predicted results.</description><subject>Applied sciences</subject><subject>CAD/CAM system</subject><subject>CAPP</subject><subject>Computer aided design</subject><subject>Computer aided manufacturing</subject><subject>Computer science; control theory; systems</subject><subject>Electric switches</subject><subject>Exact sciences and technology</subject><subject>ICAM</subject><subject>Mechanical engineering. Machine design</subject><subject>Milling strategy</subject><subject>Neural network</subject><subject>Neural networks</subject><subject>Software</subject><subject>Surface roughness</subject><issn>0890-6955</issn><issn>1879-2170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1P3DAQhq2KSizQn4DkCxQOoePYjpNTVSG-JCQOtGfLccbUkI0X26Hqv8fLIrjBaTSj553RPITsMzhhwJoft9B2UDWdlEdQHwOAkJX6QhasVV1VMwVbZPGGbJOdlO4LxFrOFuT2aso4jv4Op0xzCCNdmfyXlhajyT5M1IVIl74g0x0NjrqISNMcnbGY6JzW4wnnaMZS8r8QH9Ie-erMmPDba90lf87Pfp9eVtc3F1env64rKwBypYRqeqsEtqD4ILAfZNvUAlzDjENe962qO-N41_fIVcMGNnRODshb00oQDd8l3zd7VzE8zpiyXvpkyzdmwjAnrYTshOSwJg8_JGslO143rIByA9oYUoro9Cr6pYn_NQO9lq1fZOu1SQ21fpGtVckdvB4wyZrRRTNZn97DvISEgML93HBYvDx5jDpZj5PFwUe0WQ_Bf3LpGYu1k7Y</recordid><startdate>20020801</startdate><enddate>20020801</enddate><creator>Balic, J</creator><creator>Korosec, M</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>7TC</scope></search><sort><creationdate>20020801</creationdate><title>Intelligent tool path generation for milling of free surfaces using neural networks</title><author>Balic, J ; Korosec, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-7476bc74e8073d4ebd586240f61afe32b8729af39bbe3761d1d9f5de38a850463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>CAD/CAM system</topic><topic>CAPP</topic><topic>Computer aided design</topic><topic>Computer aided manufacturing</topic><topic>Computer science; control theory; systems</topic><topic>Electric switches</topic><topic>Exact sciences and technology</topic><topic>ICAM</topic><topic>Mechanical engineering. Machine design</topic><topic>Milling strategy</topic><topic>Neural network</topic><topic>Neural networks</topic><topic>Software</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balic, J</creatorcontrib><creatorcontrib>Korosec, M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>International journal of machine tools &amp; manufacture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balic, J</au><au>Korosec, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent tool path generation for milling of free surfaces using neural networks</atitle><jtitle>International journal of machine tools &amp; manufacture</jtitle><date>2002-08-01</date><risdate>2002</risdate><volume>42</volume><issue>10</issue><spage>1171</spage><epage>1179</epage><pages>1171-1179</pages><issn>0890-6955</issn><eissn>1879-2170</eissn><coden>IMTME3</coden><abstract>The presented paper has an intention to show how with the help of Artificial Neural Network (ANN), the prediction of milling tool-path strategy could be made in order to establish which milling path strategy or their sequence will show the best results (will be the most appropriate) at free surface machining, according to set technological aim. In our case the best possible surface quality of machined surface was taken as the primary technological aim. Configuration of used Neural Network (NN) is presented, and the whole procedure is shown on an example of mould, for producing light switches. The verification of machined surface quality, according to average mean roughness, R a, is also being done, and compared with the NN predicted results.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0890-6955(02)00045-7</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0890-6955
ispartof International journal of machine tools & manufacture, 2002-08, Vol.42 (10), p.1171-1179
issn 0890-6955
1879-2170
language eng
recordid cdi_proquest_miscellaneous_745945306
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
CAD/CAM system
CAPP
Computer aided design
Computer aided manufacturing
Computer science
control theory
systems
Electric switches
Exact sciences and technology
ICAM
Mechanical engineering. Machine design
Milling strategy
Neural network
Neural networks
Software
Surface roughness
title Intelligent tool path generation for milling of free surfaces using neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T23%3A30%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20tool%20path%20generation%20for%20milling%20of%20free%20surfaces%20using%20neural%20networks&rft.jtitle=International%20journal%20of%20machine%20tools%20&%20manufacture&rft.au=Balic,%20J&rft.date=2002-08-01&rft.volume=42&rft.issue=10&rft.spage=1171&rft.epage=1179&rft.pages=1171-1179&rft.issn=0890-6955&rft.eissn=1879-2170&rft.coden=IMTME3&rft_id=info:doi/10.1016/S0890-6955(02)00045-7&rft_dat=%3Cproquest_cross%3E745945306%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27593261&rft_id=info:pmid/&rft_els_id=S0890695502000457&rfr_iscdi=true