Nonlinear Dynamics of Two-Body Tethered Satellite Systems: Constant Length Case

The equations governing the three-dimensional motion of a two-body tethered satellite system are highly nonlinear, and their solutions are likely to exhibit interesting behavior typical to nonlinear systems. In this paper, these equations are analyzed using numerical tools such as phase portraits, s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the astronautical sciences 2001-04, Vol.49 (2), p.219-236
Hauptverfasser: Misra, A K, Nixon, M S, Modi, V J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 236
container_issue 2
container_start_page 219
container_title The Journal of the astronautical sciences
container_volume 49
creator Misra, A K
Nixon, M S
Modi, V J
description The equations governing the three-dimensional motion of a two-body tethered satellite system are highly nonlinear, and their solutions are likely to exhibit interesting behavior typical to nonlinear systems. In this paper, these equations are analyzed using numerical tools such as phase portraits, spectral analysis, Poincare sections and Lyapunov exponents. Motion in the stationkeeping phase (when the tether length is constant) is studied, first considering the in-plane pitch motion only, and then considering the three-dimensional coupled pitch and roll motions. Regions of both regular (periodic or quasi-periodic) and chaotic motion are observed to exist in the planar system for only elliptic orbits, but in the case of coupled motion for both circular and elliptic orbits. The size of the chaotic region grows with eccentricity, and in the coupled motion circular orbit case with increasing values of the Hamiltonian.
doi_str_mv 10.1007/BF03546319
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745945282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2436416876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-bac7d291a7dfcce05f671ae4f886c22b21cdc8492e8d396bfcb4d3519e3650ef3</originalsourceid><addsrcrecordid>eNp90U9LwzAYBvAgCs7pxU8QEBSEav41bby56lQY7rB5Lmn6xnV0iTYZ0m9vxwTBg6fn8uPhfXkQOqfkhhKS3U6mhKdCcqoO0IhRlSYkzeghGhHCaKKoYMfoJIQ1IZwSRUdo_upd2zjQHX7ond40JmBv8fLLJxNf93gJcQUd1HihI7RtEwEv-hBhE-5w4V2I2kU8A_ceV7jQAU7RkdVtgLOfHKO36eOyeE5m86eX4n6WGM5ITCptspopqrPaGgMktTKjGoTNc2kYqxg1tcmFYpDXXMnKmkrUPKUKuEwJWD5GV_vej85_biHEctMEM1yoHfhtKDORKpGynA3y8l_JZC6EzOUAL_7Atd92bviiZIJLQWWe7dT1XpnOh9CBLT-6ZqO7vqSk3G1Q_m7AvwFJBHfy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436416876</pqid></control><display><type>article</type><title>Nonlinear Dynamics of Two-Body Tethered Satellite Systems: Constant Length Case</title><source>SpringerLink Journals - AutoHoldings</source><creator>Misra, A K ; Nixon, M S ; Modi, V J</creator><creatorcontrib>Misra, A K ; Nixon, M S ; Modi, V J</creatorcontrib><description>The equations governing the three-dimensional motion of a two-body tethered satellite system are highly nonlinear, and their solutions are likely to exhibit interesting behavior typical to nonlinear systems. In this paper, these equations are analyzed using numerical tools such as phase portraits, spectral analysis, Poincare sections and Lyapunov exponents. Motion in the stationkeeping phase (when the tether length is constant) is studied, first considering the in-plane pitch motion only, and then considering the three-dimensional coupled pitch and roll motions. Regions of both regular (periodic or quasi-periodic) and chaotic motion are observed to exist in the planar system for only elliptic orbits, but in the case of coupled motion for both circular and elliptic orbits. The size of the chaotic region grows with eccentricity, and in the coupled motion circular orbit case with increasing values of the Hamiltonian.</description><identifier>ISSN: 0021-9142</identifier><identifier>EISSN: 2195-0571</identifier><identifier>DOI: 10.1007/BF03546319</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Chaos theory ; Circular orbits ; Dynamical systems ; Hamiltonians ; Liapunov exponents ; Lyapunov methods ; Nonlinear dynamics ; Nonlinear systems ; Orbits ; Pitch (inclination) ; Rolling motion ; Spectrum analysis ; Stationkeeping ; Tethered satellites ; Tetherlines ; Three dimensional motion</subject><ispartof>The Journal of the astronautical sciences, 2001-04, Vol.49 (2), p.219-236</ispartof><rights>American Astronautical Society 2001.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-bac7d291a7dfcce05f671ae4f886c22b21cdc8492e8d396bfcb4d3519e3650ef3</citedby><cites>FETCH-LOGICAL-c320t-bac7d291a7dfcce05f671ae4f886c22b21cdc8492e8d396bfcb4d3519e3650ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Misra, A K</creatorcontrib><creatorcontrib>Nixon, M S</creatorcontrib><creatorcontrib>Modi, V J</creatorcontrib><title>Nonlinear Dynamics of Two-Body Tethered Satellite Systems: Constant Length Case</title><title>The Journal of the astronautical sciences</title><description>The equations governing the three-dimensional motion of a two-body tethered satellite system are highly nonlinear, and their solutions are likely to exhibit interesting behavior typical to nonlinear systems. In this paper, these equations are analyzed using numerical tools such as phase portraits, spectral analysis, Poincare sections and Lyapunov exponents. Motion in the stationkeeping phase (when the tether length is constant) is studied, first considering the in-plane pitch motion only, and then considering the three-dimensional coupled pitch and roll motions. Regions of both regular (periodic or quasi-periodic) and chaotic motion are observed to exist in the planar system for only elliptic orbits, but in the case of coupled motion for both circular and elliptic orbits. The size of the chaotic region grows with eccentricity, and in the coupled motion circular orbit case with increasing values of the Hamiltonian.</description><subject>Chaos theory</subject><subject>Circular orbits</subject><subject>Dynamical systems</subject><subject>Hamiltonians</subject><subject>Liapunov exponents</subject><subject>Lyapunov methods</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Orbits</subject><subject>Pitch (inclination)</subject><subject>Rolling motion</subject><subject>Spectrum analysis</subject><subject>Stationkeeping</subject><subject>Tethered satellites</subject><subject>Tetherlines</subject><subject>Three dimensional motion</subject><issn>0021-9142</issn><issn>2195-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp90U9LwzAYBvAgCs7pxU8QEBSEav41bby56lQY7rB5Lmn6xnV0iTYZ0m9vxwTBg6fn8uPhfXkQOqfkhhKS3U6mhKdCcqoO0IhRlSYkzeghGhHCaKKoYMfoJIQ1IZwSRUdo_upd2zjQHX7ond40JmBv8fLLJxNf93gJcQUd1HihI7RtEwEv-hBhE-5w4V2I2kU8A_ceV7jQAU7RkdVtgLOfHKO36eOyeE5m86eX4n6WGM5ITCptspopqrPaGgMktTKjGoTNc2kYqxg1tcmFYpDXXMnKmkrUPKUKuEwJWD5GV_vej85_biHEctMEM1yoHfhtKDORKpGynA3y8l_JZC6EzOUAL_7Atd92bviiZIJLQWWe7dT1XpnOh9CBLT-6ZqO7vqSk3G1Q_m7AvwFJBHfy</recordid><startdate>20010401</startdate><enddate>20010401</enddate><creator>Misra, A K</creator><creator>Nixon, M S</creator><creator>Modi, V J</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>7TC</scope></search><sort><creationdate>20010401</creationdate><title>Nonlinear Dynamics of Two-Body Tethered Satellite Systems: Constant Length Case</title><author>Misra, A K ; Nixon, M S ; Modi, V J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-bac7d291a7dfcce05f671ae4f886c22b21cdc8492e8d396bfcb4d3519e3650ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Chaos theory</topic><topic>Circular orbits</topic><topic>Dynamical systems</topic><topic>Hamiltonians</topic><topic>Liapunov exponents</topic><topic>Lyapunov methods</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Orbits</topic><topic>Pitch (inclination)</topic><topic>Rolling motion</topic><topic>Spectrum analysis</topic><topic>Stationkeeping</topic><topic>Tethered satellites</topic><topic>Tetherlines</topic><topic>Three dimensional motion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Misra, A K</creatorcontrib><creatorcontrib>Nixon, M S</creatorcontrib><creatorcontrib>Modi, V J</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>The Journal of the astronautical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Misra, A K</au><au>Nixon, M S</au><au>Modi, V J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Dynamics of Two-Body Tethered Satellite Systems: Constant Length Case</atitle><jtitle>The Journal of the astronautical sciences</jtitle><date>2001-04-01</date><risdate>2001</risdate><volume>49</volume><issue>2</issue><spage>219</spage><epage>236</epage><pages>219-236</pages><issn>0021-9142</issn><eissn>2195-0571</eissn><abstract>The equations governing the three-dimensional motion of a two-body tethered satellite system are highly nonlinear, and their solutions are likely to exhibit interesting behavior typical to nonlinear systems. In this paper, these equations are analyzed using numerical tools such as phase portraits, spectral analysis, Poincare sections and Lyapunov exponents. Motion in the stationkeeping phase (when the tether length is constant) is studied, first considering the in-plane pitch motion only, and then considering the three-dimensional coupled pitch and roll motions. Regions of both regular (periodic or quasi-periodic) and chaotic motion are observed to exist in the planar system for only elliptic orbits, but in the case of coupled motion for both circular and elliptic orbits. The size of the chaotic region grows with eccentricity, and in the coupled motion circular orbit case with increasing values of the Hamiltonian.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF03546319</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9142
ispartof The Journal of the astronautical sciences, 2001-04, Vol.49 (2), p.219-236
issn 0021-9142
2195-0571
language eng
recordid cdi_proquest_miscellaneous_745945282
source SpringerLink Journals - AutoHoldings
subjects Chaos theory
Circular orbits
Dynamical systems
Hamiltonians
Liapunov exponents
Lyapunov methods
Nonlinear dynamics
Nonlinear systems
Orbits
Pitch (inclination)
Rolling motion
Spectrum analysis
Stationkeeping
Tethered satellites
Tetherlines
Three dimensional motion
title Nonlinear Dynamics of Two-Body Tethered Satellite Systems: Constant Length Case
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A41%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Dynamics%20of%20Two-Body%20Tethered%20Satellite%20Systems:%20Constant%20Length%20Case&rft.jtitle=The%20Journal%20of%20the%20astronautical%20sciences&rft.au=Misra,%20A%20K&rft.date=2001-04-01&rft.volume=49&rft.issue=2&rft.spage=219&rft.epage=236&rft.pages=219-236&rft.issn=0021-9142&rft.eissn=2195-0571&rft_id=info:doi/10.1007/BF03546319&rft_dat=%3Cproquest_cross%3E2436416876%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436416876&rft_id=info:pmid/&rfr_iscdi=true