Divergence of the mitochondrial genome structure in the apicomplexan parasites, Babesia and Theileria
Mitochondrial (mt) genomes from diverse phylogenetic groups vary considerably in size, structure, and organization. The genus Plasmodium, causative agent of malaria, of the phylum Apicomplexa, has the smallest mt genome in the form of a circular and/or tandemly repeated linear element of 6 kb, encod...
Gespeichert in:
Veröffentlicht in: | Molecular biology and evolution 2010-05, Vol.27 (5), p.1107-1116 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1116 |
---|---|
container_issue | 5 |
container_start_page | 1107 |
container_title | Molecular biology and evolution |
container_volume | 27 |
creator | Hikosaka, Kenji Watanabe, Yoh-Ichi Tsuji, Naotoshi Kita, Kiyoshi Kishine, Hiroe Arisue, Nobuko Palacpac, Nirianne Marie Q Kawazu, Shin-Ichiro Sawai, Hiromi Horii, Toshihiro Igarashi, Ikuo Tanabe, Kazuyuki |
description | Mitochondrial (mt) genomes from diverse phylogenetic groups vary considerably in size, structure, and organization. The genus Plasmodium, causative agent of malaria, of the phylum Apicomplexa, has the smallest mt genome in the form of a circular and/or tandemly repeated linear element of 6 kb, encoding only three protein genes (cox1, cox3, and cob). The closely related genera Babesia and Theileria also have small mt genomes (6.6 kb) that are monomeric linear with an organization distinct from Plasmodium. To elucidate the structural divergence and evolution of mt genomes between Babesia/Theileria and Plasmodium, we determined five new sequences from Babesia bigemina, B. caballi, B. gibsoni, Theileria orientalis, and T. equi. Together with previously reported sequences of B. bovis, T. annulata, and T. parva, all eight Babesia and Theileria mt genomes are linear molecules with terminal inverted repeats (TIRs) on both ends containing three protein-coding genes (cox1, cox3, and cob) and six large subunit (LSU) ribosomal RNA (rRNA) gene fragments. The organization and transcriptional direction of protein-coding genes and the rRNA gene fragments were completely conserved in the four Babesia species. In contrast, notable variation occurred in the four Theileria species. Although the genome structures of T. annulata and T. parva were nearly identical to those of Babesia, an inversion in the 3-kb central region was found in T. orientalis. Moreover, the T. equi mt genome is the largest (8.2 kb) and most divergent with unusually long TIR sequences, in which cox3 and two LSU rRNA gene fragments are located. The T. equi mt genome showed little synteny to the other species. These results suggest that the Theileria mt genome is highly diverse with lineage-specific evolution in two Theileria species: genome inversion in T. orientalis and gene-embedded long TIR in T. equi. |
doi_str_mv | 10.1093/molbev/msp320 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745939299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733646468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-b6af1c0446107800b5645e63b077cc3890e60ef7cbf14f7adbcceb89537717743</originalsourceid><addsrcrecordid>eNqFkT1PxDAMhiMEguNjZEURCwsFp0mbZuQbJCQWmKsk53JBbVOS9gT_nsABAwvyYEt-9MrWQ8g-gxMGip92vjW4PO3iwHNYIzNWcJkxydQ6mYFMswBebZHtGF8AmBBluUm2cgAulJIzgpduieEZe4vUN3RcIO3c6O3C9_PgdEvTyndI4xgmO04Bqeu_KD0467uhxTfd00EHHd2I8Ziea4PRaar7OX1coGsxxeySjUa3Efe--w55ur56vLjN7h9u7i7O7jMrinLMTKkbZiEdyUBWAKYoRYElNyCltbxSgCVgI61pmGiknhtr0VQqvSyZlILvkKNV7hD864RxrDsXLbat7tFPsZaiUFzlSv1Pcl6KVFUiD_-QL34KfXqjznle8YoxnqBsBdngYwzY1ENwnQ7vNYP601O98lSvPCX-4Dt0Mh3Of-kfMfwDxWKQmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>232838113</pqid></control><display><type>article</type><title>Divergence of the mitochondrial genome structure in the apicomplexan parasites, Babesia and Theileria</title><source>MEDLINE</source><source>Access via Oxford University Press (Open Access Collection)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hikosaka, Kenji ; Watanabe, Yoh-Ichi ; Tsuji, Naotoshi ; Kita, Kiyoshi ; Kishine, Hiroe ; Arisue, Nobuko ; Palacpac, Nirianne Marie Q ; Kawazu, Shin-Ichiro ; Sawai, Hiromi ; Horii, Toshihiro ; Igarashi, Ikuo ; Tanabe, Kazuyuki</creator><creatorcontrib>Hikosaka, Kenji ; Watanabe, Yoh-Ichi ; Tsuji, Naotoshi ; Kita, Kiyoshi ; Kishine, Hiroe ; Arisue, Nobuko ; Palacpac, Nirianne Marie Q ; Kawazu, Shin-Ichiro ; Sawai, Hiromi ; Horii, Toshihiro ; Igarashi, Ikuo ; Tanabe, Kazuyuki</creatorcontrib><description>Mitochondrial (mt) genomes from diverse phylogenetic groups vary considerably in size, structure, and organization. The genus Plasmodium, causative agent of malaria, of the phylum Apicomplexa, has the smallest mt genome in the form of a circular and/or tandemly repeated linear element of 6 kb, encoding only three protein genes (cox1, cox3, and cob). The closely related genera Babesia and Theileria also have small mt genomes (6.6 kb) that are monomeric linear with an organization distinct from Plasmodium. To elucidate the structural divergence and evolution of mt genomes between Babesia/Theileria and Plasmodium, we determined five new sequences from Babesia bigemina, B. caballi, B. gibsoni, Theileria orientalis, and T. equi. Together with previously reported sequences of B. bovis, T. annulata, and T. parva, all eight Babesia and Theileria mt genomes are linear molecules with terminal inverted repeats (TIRs) on both ends containing three protein-coding genes (cox1, cox3, and cob) and six large subunit (LSU) ribosomal RNA (rRNA) gene fragments. The organization and transcriptional direction of protein-coding genes and the rRNA gene fragments were completely conserved in the four Babesia species. In contrast, notable variation occurred in the four Theileria species. Although the genome structures of T. annulata and T. parva were nearly identical to those of Babesia, an inversion in the 3-kb central region was found in T. orientalis. Moreover, the T. equi mt genome is the largest (8.2 kb) and most divergent with unusually long TIR sequences, in which cox3 and two LSU rRNA gene fragments are located. The T. equi mt genome showed little synteny to the other species. These results suggest that the Theileria mt genome is highly diverse with lineage-specific evolution in two Theileria species: genome inversion in T. orientalis and gene-embedded long TIR in T. equi.</description><identifier>ISSN: 0737-4038</identifier><identifier>EISSN: 1537-1719</identifier><identifier>DOI: 10.1093/molbev/msp320</identifier><identifier>PMID: 20034997</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Animals ; Apicomplexa ; Babesia ; Babesia - genetics ; Babesia bigemina ; Base Sequence ; Conserved Sequence ; DNA, Intergenic - genetics ; Evolution & development ; Gene expression ; Genetic Variation ; Genome, Mitochondrial - genetics ; Genome, Protozoan - genetics ; Genomics ; Likelihood Functions ; Malaria ; Molecular structure ; Open Reading Frames - genetics ; Parasites ; Parasites - genetics ; Parasitic protozoa ; Phylogeny ; Plasmodium ; Proteins ; Ribonucleic acid ; RNA ; Sequence Homology, Nucleic Acid ; Theileria ; Theileria - genetics ; Theileria orientalis ; Transcription, Genetic ; Vector-borne diseases</subject><ispartof>Molecular biology and evolution, 2010-05, Vol.27 (5), p.1107-1116</ispartof><rights>Copyright Oxford Publishing Limited(England) May 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-b6af1c0446107800b5645e63b077cc3890e60ef7cbf14f7adbcceb89537717743</citedby><cites>FETCH-LOGICAL-c456t-b6af1c0446107800b5645e63b077cc3890e60ef7cbf14f7adbcceb89537717743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20034997$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hikosaka, Kenji</creatorcontrib><creatorcontrib>Watanabe, Yoh-Ichi</creatorcontrib><creatorcontrib>Tsuji, Naotoshi</creatorcontrib><creatorcontrib>Kita, Kiyoshi</creatorcontrib><creatorcontrib>Kishine, Hiroe</creatorcontrib><creatorcontrib>Arisue, Nobuko</creatorcontrib><creatorcontrib>Palacpac, Nirianne Marie Q</creatorcontrib><creatorcontrib>Kawazu, Shin-Ichiro</creatorcontrib><creatorcontrib>Sawai, Hiromi</creatorcontrib><creatorcontrib>Horii, Toshihiro</creatorcontrib><creatorcontrib>Igarashi, Ikuo</creatorcontrib><creatorcontrib>Tanabe, Kazuyuki</creatorcontrib><title>Divergence of the mitochondrial genome structure in the apicomplexan parasites, Babesia and Theileria</title><title>Molecular biology and evolution</title><addtitle>Mol Biol Evol</addtitle><description>Mitochondrial (mt) genomes from diverse phylogenetic groups vary considerably in size, structure, and organization. The genus Plasmodium, causative agent of malaria, of the phylum Apicomplexa, has the smallest mt genome in the form of a circular and/or tandemly repeated linear element of 6 kb, encoding only three protein genes (cox1, cox3, and cob). The closely related genera Babesia and Theileria also have small mt genomes (6.6 kb) that are monomeric linear with an organization distinct from Plasmodium. To elucidate the structural divergence and evolution of mt genomes between Babesia/Theileria and Plasmodium, we determined five new sequences from Babesia bigemina, B. caballi, B. gibsoni, Theileria orientalis, and T. equi. Together with previously reported sequences of B. bovis, T. annulata, and T. parva, all eight Babesia and Theileria mt genomes are linear molecules with terminal inverted repeats (TIRs) on both ends containing three protein-coding genes (cox1, cox3, and cob) and six large subunit (LSU) ribosomal RNA (rRNA) gene fragments. The organization and transcriptional direction of protein-coding genes and the rRNA gene fragments were completely conserved in the four Babesia species. In contrast, notable variation occurred in the four Theileria species. Although the genome structures of T. annulata and T. parva were nearly identical to those of Babesia, an inversion in the 3-kb central region was found in T. orientalis. Moreover, the T. equi mt genome is the largest (8.2 kb) and most divergent with unusually long TIR sequences, in which cox3 and two LSU rRNA gene fragments are located. The T. equi mt genome showed little synteny to the other species. These results suggest that the Theileria mt genome is highly diverse with lineage-specific evolution in two Theileria species: genome inversion in T. orientalis and gene-embedded long TIR in T. equi.</description><subject>Animals</subject><subject>Apicomplexa</subject><subject>Babesia</subject><subject>Babesia - genetics</subject><subject>Babesia bigemina</subject><subject>Base Sequence</subject><subject>Conserved Sequence</subject><subject>DNA, Intergenic - genetics</subject><subject>Evolution & development</subject><subject>Gene expression</subject><subject>Genetic Variation</subject><subject>Genome, Mitochondrial - genetics</subject><subject>Genome, Protozoan - genetics</subject><subject>Genomics</subject><subject>Likelihood Functions</subject><subject>Malaria</subject><subject>Molecular structure</subject><subject>Open Reading Frames - genetics</subject><subject>Parasites</subject><subject>Parasites - genetics</subject><subject>Parasitic protozoa</subject><subject>Phylogeny</subject><subject>Plasmodium</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Sequence Homology, Nucleic Acid</subject><subject>Theileria</subject><subject>Theileria - genetics</subject><subject>Theileria orientalis</subject><subject>Transcription, Genetic</subject><subject>Vector-borne diseases</subject><issn>0737-4038</issn><issn>1537-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkT1PxDAMhiMEguNjZEURCwsFp0mbZuQbJCQWmKsk53JBbVOS9gT_nsABAwvyYEt-9MrWQ8g-gxMGip92vjW4PO3iwHNYIzNWcJkxydQ6mYFMswBebZHtGF8AmBBluUm2cgAulJIzgpduieEZe4vUN3RcIO3c6O3C9_PgdEvTyndI4xgmO04Bqeu_KD0467uhxTfd00EHHd2I8Ziea4PRaar7OX1coGsxxeySjUa3Efe--w55ur56vLjN7h9u7i7O7jMrinLMTKkbZiEdyUBWAKYoRYElNyCltbxSgCVgI61pmGiknhtr0VQqvSyZlILvkKNV7hD864RxrDsXLbat7tFPsZaiUFzlSv1Pcl6KVFUiD_-QL34KfXqjznle8YoxnqBsBdngYwzY1ENwnQ7vNYP601O98lSvPCX-4Dt0Mh3Of-kfMfwDxWKQmQ</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Hikosaka, Kenji</creator><creator>Watanabe, Yoh-Ichi</creator><creator>Tsuji, Naotoshi</creator><creator>Kita, Kiyoshi</creator><creator>Kishine, Hiroe</creator><creator>Arisue, Nobuko</creator><creator>Palacpac, Nirianne Marie Q</creator><creator>Kawazu, Shin-Ichiro</creator><creator>Sawai, Hiromi</creator><creator>Horii, Toshihiro</creator><creator>Igarashi, Ikuo</creator><creator>Tanabe, Kazuyuki</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>20100501</creationdate><title>Divergence of the mitochondrial genome structure in the apicomplexan parasites, Babesia and Theileria</title><author>Hikosaka, Kenji ; Watanabe, Yoh-Ichi ; Tsuji, Naotoshi ; Kita, Kiyoshi ; Kishine, Hiroe ; Arisue, Nobuko ; Palacpac, Nirianne Marie Q ; Kawazu, Shin-Ichiro ; Sawai, Hiromi ; Horii, Toshihiro ; Igarashi, Ikuo ; Tanabe, Kazuyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-b6af1c0446107800b5645e63b077cc3890e60ef7cbf14f7adbcceb89537717743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Apicomplexa</topic><topic>Babesia</topic><topic>Babesia - genetics</topic><topic>Babesia bigemina</topic><topic>Base Sequence</topic><topic>Conserved Sequence</topic><topic>DNA, Intergenic - genetics</topic><topic>Evolution & development</topic><topic>Gene expression</topic><topic>Genetic Variation</topic><topic>Genome, Mitochondrial - genetics</topic><topic>Genome, Protozoan - genetics</topic><topic>Genomics</topic><topic>Likelihood Functions</topic><topic>Malaria</topic><topic>Molecular structure</topic><topic>Open Reading Frames - genetics</topic><topic>Parasites</topic><topic>Parasites - genetics</topic><topic>Parasitic protozoa</topic><topic>Phylogeny</topic><topic>Plasmodium</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Sequence Homology, Nucleic Acid</topic><topic>Theileria</topic><topic>Theileria - genetics</topic><topic>Theileria orientalis</topic><topic>Transcription, Genetic</topic><topic>Vector-borne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hikosaka, Kenji</creatorcontrib><creatorcontrib>Watanabe, Yoh-Ichi</creatorcontrib><creatorcontrib>Tsuji, Naotoshi</creatorcontrib><creatorcontrib>Kita, Kiyoshi</creatorcontrib><creatorcontrib>Kishine, Hiroe</creatorcontrib><creatorcontrib>Arisue, Nobuko</creatorcontrib><creatorcontrib>Palacpac, Nirianne Marie Q</creatorcontrib><creatorcontrib>Kawazu, Shin-Ichiro</creatorcontrib><creatorcontrib>Sawai, Hiromi</creatorcontrib><creatorcontrib>Horii, Toshihiro</creatorcontrib><creatorcontrib>Igarashi, Ikuo</creatorcontrib><creatorcontrib>Tanabe, Kazuyuki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Molecular biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hikosaka, Kenji</au><au>Watanabe, Yoh-Ichi</au><au>Tsuji, Naotoshi</au><au>Kita, Kiyoshi</au><au>Kishine, Hiroe</au><au>Arisue, Nobuko</au><au>Palacpac, Nirianne Marie Q</au><au>Kawazu, Shin-Ichiro</au><au>Sawai, Hiromi</au><au>Horii, Toshihiro</au><au>Igarashi, Ikuo</au><au>Tanabe, Kazuyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Divergence of the mitochondrial genome structure in the apicomplexan parasites, Babesia and Theileria</atitle><jtitle>Molecular biology and evolution</jtitle><addtitle>Mol Biol Evol</addtitle><date>2010-05-01</date><risdate>2010</risdate><volume>27</volume><issue>5</issue><spage>1107</spage><epage>1116</epage><pages>1107-1116</pages><issn>0737-4038</issn><eissn>1537-1719</eissn><abstract>Mitochondrial (mt) genomes from diverse phylogenetic groups vary considerably in size, structure, and organization. The genus Plasmodium, causative agent of malaria, of the phylum Apicomplexa, has the smallest mt genome in the form of a circular and/or tandemly repeated linear element of 6 kb, encoding only three protein genes (cox1, cox3, and cob). The closely related genera Babesia and Theileria also have small mt genomes (6.6 kb) that are monomeric linear with an organization distinct from Plasmodium. To elucidate the structural divergence and evolution of mt genomes between Babesia/Theileria and Plasmodium, we determined five new sequences from Babesia bigemina, B. caballi, B. gibsoni, Theileria orientalis, and T. equi. Together with previously reported sequences of B. bovis, T. annulata, and T. parva, all eight Babesia and Theileria mt genomes are linear molecules with terminal inverted repeats (TIRs) on both ends containing three protein-coding genes (cox1, cox3, and cob) and six large subunit (LSU) ribosomal RNA (rRNA) gene fragments. The organization and transcriptional direction of protein-coding genes and the rRNA gene fragments were completely conserved in the four Babesia species. In contrast, notable variation occurred in the four Theileria species. Although the genome structures of T. annulata and T. parva were nearly identical to those of Babesia, an inversion in the 3-kb central region was found in T. orientalis. Moreover, the T. equi mt genome is the largest (8.2 kb) and most divergent with unusually long TIR sequences, in which cox3 and two LSU rRNA gene fragments are located. The T. equi mt genome showed little synteny to the other species. These results suggest that the Theileria mt genome is highly diverse with lineage-specific evolution in two Theileria species: genome inversion in T. orientalis and gene-embedded long TIR in T. equi.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>20034997</pmid><doi>10.1093/molbev/msp320</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0737-4038 |
ispartof | Molecular biology and evolution, 2010-05, Vol.27 (5), p.1107-1116 |
issn | 0737-4038 1537-1719 |
language | eng |
recordid | cdi_proquest_miscellaneous_745939299 |
source | MEDLINE; Access via Oxford University Press (Open Access Collection); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Apicomplexa Babesia Babesia - genetics Babesia bigemina Base Sequence Conserved Sequence DNA, Intergenic - genetics Evolution & development Gene expression Genetic Variation Genome, Mitochondrial - genetics Genome, Protozoan - genetics Genomics Likelihood Functions Malaria Molecular structure Open Reading Frames - genetics Parasites Parasites - genetics Parasitic protozoa Phylogeny Plasmodium Proteins Ribonucleic acid RNA Sequence Homology, Nucleic Acid Theileria Theileria - genetics Theileria orientalis Transcription, Genetic Vector-borne diseases |
title | Divergence of the mitochondrial genome structure in the apicomplexan parasites, Babesia and Theileria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A01%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Divergence%20of%20the%20mitochondrial%20genome%20structure%20in%20the%20apicomplexan%20parasites,%20Babesia%20and%20Theileria&rft.jtitle=Molecular%20biology%20and%20evolution&rft.au=Hikosaka,%20Kenji&rft.date=2010-05-01&rft.volume=27&rft.issue=5&rft.spage=1107&rft.epage=1116&rft.pages=1107-1116&rft.issn=0737-4038&rft.eissn=1537-1719&rft_id=info:doi/10.1093/molbev/msp320&rft_dat=%3Cproquest_cross%3E733646468%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=232838113&rft_id=info:pmid/20034997&rfr_iscdi=true |