Large Area Scene Selection Interface (LASSI): Methodology of Selecting Landsat Imagery for the Global Land Survey 2005
The Global Land Survey (GLS) 2005 is a cloud-free, orthorectified collection of Landsat imagery acquired during the 2004 to 2007 epoch intended to support global land-cover and ecological monitoring. Due to the numerous complexities in selecting imagery for the GLS2005, NASA and the U.S. Geological...
Gespeichert in:
Veröffentlicht in: | Photogrammetric engineering and remote sensing 2009-11, Vol.75 (11), p.1287-1296 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1296 |
---|---|
container_issue | 11 |
container_start_page | 1287 |
container_title | Photogrammetric engineering and remote sensing |
container_volume | 75 |
creator | FRANKS, Shannon MASEK, Jeffrey G HEADLEY, Rachel M. K GASCH, John ARVIDSON, Terry |
description | The Global Land Survey (GLS) 2005 is a cloud-free, orthorectified collection of Landsat imagery acquired during the 2004 to 2007 epoch intended to support global land-cover and ecological monitoring. Due to the numerous complexities in selecting imagery for the GLS2005, NASA and the U.S. Geological Survey (USGS) sponsored the development of an automated scene selection tool, the Large Area Scene Selection Interface (LASSI), to aid in the selection of imagery for this data set. This innovative approach to scene selection applied a user-defined weighting system to various scene parameters: image cloud cover, image vegetation greenness, choice of sensor, and the ability of the Landsat-7 Scan Line Corrector (SLC)-off pair to completely fill image gaps, among others. The parameters considered in scene selection were weighted according to their relative importance to the data set, along with the algorithm's sensitivity to that weight. This paper describes the methodology and analysis that established the parameter weighting strategy, as well as the post-screening processes used in selecting the optimal data set for GLS2005. |
doi_str_mv | 10.14358/PERS.75.11.1287 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_745938818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>745938818</sourcerecordid><originalsourceid>FETCH-LOGICAL-p217t-6bff2b0319dd774088e43b6eb11afe9b0d7a4d59b15b34f1fb620c185b8032ea3</originalsourceid><addsrcrecordid>eNo1zsFLwzAYBfAgCs7p3WMuoh468yXNknobY85CRbF6Lkn7ZZt0zUy6wf57h87TO7wfj0fINbARpELqh7fZezlScgQwAq7VCRlwodJEM5WdkgFjWZYAAD8nFzF-MSZAghqQXWHCAukkoKFljR3SElus-5XvaN71GJypkd4Vk7LM7x_pC_ZL3_jWL_bUu3_bLWhhuiaanuZrs8Cwp84H2i-RzltvTftb03IbdrinnDF5Sc6caSNeHXNIPp9mH9PnpHid59NJkWw4qD4ZW-e4PXzNmkaplGmNqbBjtADGYWZZo0zayMyCtCJ14OyYsxq0tJoJjkYMye3f7ib47y3GvlqvYo1tazr021ipVGZCa9AHeXOUJtamdcF09SpWm7Bam7CvOAfOQCrxAzNCa0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>745938818</pqid></control><display><type>article</type><title>Large Area Scene Selection Interface (LASSI): Methodology of Selecting Landsat Imagery for the Global Land Survey 2005</title><source>IngentaConnect</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>FRANKS, Shannon ; MASEK, Jeffrey G ; HEADLEY, Rachel M. K ; GASCH, John ; ARVIDSON, Terry</creator><creatorcontrib>FRANKS, Shannon ; MASEK, Jeffrey G ; HEADLEY, Rachel M. K ; GASCH, John ; ARVIDSON, Terry</creatorcontrib><description>The Global Land Survey (GLS) 2005 is a cloud-free, orthorectified collection of Landsat imagery acquired during the 2004 to 2007 epoch intended to support global land-cover and ecological monitoring. Due to the numerous complexities in selecting imagery for the GLS2005, NASA and the U.S. Geological Survey (USGS) sponsored the development of an automated scene selection tool, the Large Area Scene Selection Interface (LASSI), to aid in the selection of imagery for this data set. This innovative approach to scene selection applied a user-defined weighting system to various scene parameters: image cloud cover, image vegetation greenness, choice of sensor, and the ability of the Landsat-7 Scan Line Corrector (SLC)-off pair to completely fill image gaps, among others. The parameters considered in scene selection were weighted according to their relative importance to the data set, along with the algorithm's sensitivity to that weight. This paper describes the methodology and analysis that established the parameter weighting strategy, as well as the post-screening processes used in selecting the optimal data set for GLS2005.</description><identifier>ISSN: 0099-1112</identifier><identifier>EISSN: 2374-8079</identifier><identifier>DOI: 10.14358/PERS.75.11.1287</identifier><identifier>CODEN: PERSDV</identifier><language>eng</language><publisher>Bethesda, MD: American Society for Photogrammetry and Remote Sensing</publisher><subject>Animal, plant and microbial ecology ; Applied geophysics ; Biological and medical sciences ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; Internal geophysics ; Teledetection and vegetation maps</subject><ispartof>Photogrammetric engineering and remote sensing, 2009-11, Vol.75 (11), p.1287-1296</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22120157$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>FRANKS, Shannon</creatorcontrib><creatorcontrib>MASEK, Jeffrey G</creatorcontrib><creatorcontrib>HEADLEY, Rachel M. K</creatorcontrib><creatorcontrib>GASCH, John</creatorcontrib><creatorcontrib>ARVIDSON, Terry</creatorcontrib><title>Large Area Scene Selection Interface (LASSI): Methodology of Selecting Landsat Imagery for the Global Land Survey 2005</title><title>Photogrammetric engineering and remote sensing</title><description>The Global Land Survey (GLS) 2005 is a cloud-free, orthorectified collection of Landsat imagery acquired during the 2004 to 2007 epoch intended to support global land-cover and ecological monitoring. Due to the numerous complexities in selecting imagery for the GLS2005, NASA and the U.S. Geological Survey (USGS) sponsored the development of an automated scene selection tool, the Large Area Scene Selection Interface (LASSI), to aid in the selection of imagery for this data set. This innovative approach to scene selection applied a user-defined weighting system to various scene parameters: image cloud cover, image vegetation greenness, choice of sensor, and the ability of the Landsat-7 Scan Line Corrector (SLC)-off pair to completely fill image gaps, among others. The parameters considered in scene selection were weighted according to their relative importance to the data set, along with the algorithm's sensitivity to that weight. This paper describes the methodology and analysis that established the parameter weighting strategy, as well as the post-screening processes used in selecting the optimal data set for GLS2005.</description><subject>Animal, plant and microbial ecology</subject><subject>Applied geophysics</subject><subject>Biological and medical sciences</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>Internal geophysics</subject><subject>Teledetection and vegetation maps</subject><issn>0099-1112</issn><issn>2374-8079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNo1zsFLwzAYBfAgCs7p3WMuoh468yXNknobY85CRbF6Lkn7ZZt0zUy6wf57h87TO7wfj0fINbARpELqh7fZezlScgQwAq7VCRlwodJEM5WdkgFjWZYAAD8nFzF-MSZAghqQXWHCAukkoKFljR3SElus-5XvaN71GJypkd4Vk7LM7x_pC_ZL3_jWL_bUu3_bLWhhuiaanuZrs8Cwp84H2i-RzltvTftb03IbdrinnDF5Sc6caSNeHXNIPp9mH9PnpHid59NJkWw4qD4ZW-e4PXzNmkaplGmNqbBjtADGYWZZo0zayMyCtCJ14OyYsxq0tJoJjkYMye3f7ib47y3GvlqvYo1tazr021ipVGZCa9AHeXOUJtamdcF09SpWm7Bam7CvOAfOQCrxAzNCa0w</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>FRANKS, Shannon</creator><creator>MASEK, Jeffrey G</creator><creator>HEADLEY, Rachel M. K</creator><creator>GASCH, John</creator><creator>ARVIDSON, Terry</creator><general>American Society for Photogrammetry and Remote Sensing</general><scope>IQODW</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope></search><sort><creationdate>20091101</creationdate><title>Large Area Scene Selection Interface (LASSI): Methodology of Selecting Landsat Imagery for the Global Land Survey 2005</title><author>FRANKS, Shannon ; MASEK, Jeffrey G ; HEADLEY, Rachel M. K ; GASCH, John ; ARVIDSON, Terry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p217t-6bff2b0319dd774088e43b6eb11afe9b0d7a4d59b15b34f1fb620c185b8032ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Applied geophysics</topic><topic>Biological and medical sciences</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>Internal geophysics</topic><topic>Teledetection and vegetation maps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FRANKS, Shannon</creatorcontrib><creatorcontrib>MASEK, Jeffrey G</creatorcontrib><creatorcontrib>HEADLEY, Rachel M. K</creatorcontrib><creatorcontrib>GASCH, John</creatorcontrib><creatorcontrib>ARVIDSON, Terry</creatorcontrib><collection>Pascal-Francis</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Photogrammetric engineering and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FRANKS, Shannon</au><au>MASEK, Jeffrey G</au><au>HEADLEY, Rachel M. K</au><au>GASCH, John</au><au>ARVIDSON, Terry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large Area Scene Selection Interface (LASSI): Methodology of Selecting Landsat Imagery for the Global Land Survey 2005</atitle><jtitle>Photogrammetric engineering and remote sensing</jtitle><date>2009-11-01</date><risdate>2009</risdate><volume>75</volume><issue>11</issue><spage>1287</spage><epage>1296</epage><pages>1287-1296</pages><issn>0099-1112</issn><eissn>2374-8079</eissn><coden>PERSDV</coden><abstract>The Global Land Survey (GLS) 2005 is a cloud-free, orthorectified collection of Landsat imagery acquired during the 2004 to 2007 epoch intended to support global land-cover and ecological monitoring. Due to the numerous complexities in selecting imagery for the GLS2005, NASA and the U.S. Geological Survey (USGS) sponsored the development of an automated scene selection tool, the Large Area Scene Selection Interface (LASSI), to aid in the selection of imagery for this data set. This innovative approach to scene selection applied a user-defined weighting system to various scene parameters: image cloud cover, image vegetation greenness, choice of sensor, and the ability of the Landsat-7 Scan Line Corrector (SLC)-off pair to completely fill image gaps, among others. The parameters considered in scene selection were weighted according to their relative importance to the data set, along with the algorithm's sensitivity to that weight. This paper describes the methodology and analysis that established the parameter weighting strategy, as well as the post-screening processes used in selecting the optimal data set for GLS2005.</abstract><cop>Bethesda, MD</cop><pub>American Society for Photogrammetry and Remote Sensing</pub><doi>10.14358/PERS.75.11.1287</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0099-1112 |
ispartof | Photogrammetric engineering and remote sensing, 2009-11, Vol.75 (11), p.1287-1296 |
issn | 0099-1112 2374-8079 |
language | eng |
recordid | cdi_proquest_miscellaneous_745938818 |
source | IngentaConnect; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Animal, plant and microbial ecology Applied geophysics Biological and medical sciences Earth sciences Earth, ocean, space Exact sciences and technology Fundamental and applied biological sciences. Psychology General aspects. Techniques Internal geophysics Teledetection and vegetation maps |
title | Large Area Scene Selection Interface (LASSI): Methodology of Selecting Landsat Imagery for the Global Land Survey 2005 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A51%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20Area%20Scene%20Selection%20Interface%20(LASSI):%20Methodology%20of%20Selecting%20Landsat%20Imagery%20for%20the%20Global%20Land%20Survey%202005&rft.jtitle=Photogrammetric%20engineering%20and%20remote%20sensing&rft.au=FRANKS,%20Shannon&rft.date=2009-11-01&rft.volume=75&rft.issue=11&rft.spage=1287&rft.epage=1296&rft.pages=1287-1296&rft.issn=0099-1112&rft.eissn=2374-8079&rft.coden=PERSDV&rft_id=info:doi/10.14358/PERS.75.11.1287&rft_dat=%3Cproquest_pasca%3E745938818%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=745938818&rft_id=info:pmid/&rfr_iscdi=true |