Large Area Scene Selection Interface (LASSI): Methodology of Selecting Landsat Imagery for the Global Land Survey 2005

The Global Land Survey (GLS) 2005 is a cloud-free, orthorectified collection of Landsat imagery acquired during the 2004 to 2007 epoch intended to support global land-cover and ecological monitoring. Due to the numerous complexities in selecting imagery for the GLS2005, NASA and the U.S. Geological...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photogrammetric engineering and remote sensing 2009-11, Vol.75 (11), p.1287-1296
Hauptverfasser: FRANKS, Shannon, MASEK, Jeffrey G, HEADLEY, Rachel M. K, GASCH, John, ARVIDSON, Terry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1296
container_issue 11
container_start_page 1287
container_title Photogrammetric engineering and remote sensing
container_volume 75
creator FRANKS, Shannon
MASEK, Jeffrey G
HEADLEY, Rachel M. K
GASCH, John
ARVIDSON, Terry
description The Global Land Survey (GLS) 2005 is a cloud-free, orthorectified collection of Landsat imagery acquired during the 2004 to 2007 epoch intended to support global land-cover and ecological monitoring. Due to the numerous complexities in selecting imagery for the GLS2005, NASA and the U.S. Geological Survey (USGS) sponsored the development of an automated scene selection tool, the Large Area Scene Selection Interface (LASSI), to aid in the selection of imagery for this data set. This innovative approach to scene selection applied a user-defined weighting system to various scene parameters: image cloud cover, image vegetation greenness, choice of sensor, and the ability of the Landsat-7 Scan Line Corrector (SLC)-off pair to completely fill image gaps, among others. The parameters considered in scene selection were weighted according to their relative importance to the data set, along with the algorithm's sensitivity to that weight. This paper describes the methodology and analysis that established the parameter weighting strategy, as well as the post-screening processes used in selecting the optimal data set for GLS2005.
doi_str_mv 10.14358/PERS.75.11.1287
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_745938818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>745938818</sourcerecordid><originalsourceid>FETCH-LOGICAL-p217t-6bff2b0319dd774088e43b6eb11afe9b0d7a4d59b15b34f1fb620c185b8032ea3</originalsourceid><addsrcrecordid>eNo1zsFLwzAYBfAgCs7p3WMuoh468yXNknobY85CRbF6Lkn7ZZt0zUy6wf57h87TO7wfj0fINbARpELqh7fZezlScgQwAq7VCRlwodJEM5WdkgFjWZYAAD8nFzF-MSZAghqQXWHCAukkoKFljR3SElus-5XvaN71GJypkd4Vk7LM7x_pC_ZL3_jWL_bUu3_bLWhhuiaanuZrs8Cwp84H2i-RzltvTftb03IbdrinnDF5Sc6caSNeHXNIPp9mH9PnpHid59NJkWw4qD4ZW-e4PXzNmkaplGmNqbBjtADGYWZZo0zayMyCtCJ14OyYsxq0tJoJjkYMye3f7ib47y3GvlqvYo1tazr021ipVGZCa9AHeXOUJtamdcF09SpWm7Bam7CvOAfOQCrxAzNCa0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>745938818</pqid></control><display><type>article</type><title>Large Area Scene Selection Interface (LASSI): Methodology of Selecting Landsat Imagery for the Global Land Survey 2005</title><source>IngentaConnect</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>FRANKS, Shannon ; MASEK, Jeffrey G ; HEADLEY, Rachel M. K ; GASCH, John ; ARVIDSON, Terry</creator><creatorcontrib>FRANKS, Shannon ; MASEK, Jeffrey G ; HEADLEY, Rachel M. K ; GASCH, John ; ARVIDSON, Terry</creatorcontrib><description>The Global Land Survey (GLS) 2005 is a cloud-free, orthorectified collection of Landsat imagery acquired during the 2004 to 2007 epoch intended to support global land-cover and ecological monitoring. Due to the numerous complexities in selecting imagery for the GLS2005, NASA and the U.S. Geological Survey (USGS) sponsored the development of an automated scene selection tool, the Large Area Scene Selection Interface (LASSI), to aid in the selection of imagery for this data set. This innovative approach to scene selection applied a user-defined weighting system to various scene parameters: image cloud cover, image vegetation greenness, choice of sensor, and the ability of the Landsat-7 Scan Line Corrector (SLC)-off pair to completely fill image gaps, among others. The parameters considered in scene selection were weighted according to their relative importance to the data set, along with the algorithm's sensitivity to that weight. This paper describes the methodology and analysis that established the parameter weighting strategy, as well as the post-screening processes used in selecting the optimal data set for GLS2005.</description><identifier>ISSN: 0099-1112</identifier><identifier>EISSN: 2374-8079</identifier><identifier>DOI: 10.14358/PERS.75.11.1287</identifier><identifier>CODEN: PERSDV</identifier><language>eng</language><publisher>Bethesda, MD: American Society for Photogrammetry and Remote Sensing</publisher><subject>Animal, plant and microbial ecology ; Applied geophysics ; Biological and medical sciences ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; Internal geophysics ; Teledetection and vegetation maps</subject><ispartof>Photogrammetric engineering and remote sensing, 2009-11, Vol.75 (11), p.1287-1296</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22120157$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>FRANKS, Shannon</creatorcontrib><creatorcontrib>MASEK, Jeffrey G</creatorcontrib><creatorcontrib>HEADLEY, Rachel M. K</creatorcontrib><creatorcontrib>GASCH, John</creatorcontrib><creatorcontrib>ARVIDSON, Terry</creatorcontrib><title>Large Area Scene Selection Interface (LASSI): Methodology of Selecting Landsat Imagery for the Global Land Survey 2005</title><title>Photogrammetric engineering and remote sensing</title><description>The Global Land Survey (GLS) 2005 is a cloud-free, orthorectified collection of Landsat imagery acquired during the 2004 to 2007 epoch intended to support global land-cover and ecological monitoring. Due to the numerous complexities in selecting imagery for the GLS2005, NASA and the U.S. Geological Survey (USGS) sponsored the development of an automated scene selection tool, the Large Area Scene Selection Interface (LASSI), to aid in the selection of imagery for this data set. This innovative approach to scene selection applied a user-defined weighting system to various scene parameters: image cloud cover, image vegetation greenness, choice of sensor, and the ability of the Landsat-7 Scan Line Corrector (SLC)-off pair to completely fill image gaps, among others. The parameters considered in scene selection were weighted according to their relative importance to the data set, along with the algorithm's sensitivity to that weight. This paper describes the methodology and analysis that established the parameter weighting strategy, as well as the post-screening processes used in selecting the optimal data set for GLS2005.</description><subject>Animal, plant and microbial ecology</subject><subject>Applied geophysics</subject><subject>Biological and medical sciences</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>Internal geophysics</subject><subject>Teledetection and vegetation maps</subject><issn>0099-1112</issn><issn>2374-8079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNo1zsFLwzAYBfAgCs7p3WMuoh468yXNknobY85CRbF6Lkn7ZZt0zUy6wf57h87TO7wfj0fINbARpELqh7fZezlScgQwAq7VCRlwodJEM5WdkgFjWZYAAD8nFzF-MSZAghqQXWHCAukkoKFljR3SElus-5XvaN71GJypkd4Vk7LM7x_pC_ZL3_jWL_bUu3_bLWhhuiaanuZrs8Cwp84H2i-RzltvTftb03IbdrinnDF5Sc6caSNeHXNIPp9mH9PnpHid59NJkWw4qD4ZW-e4PXzNmkaplGmNqbBjtADGYWZZo0zayMyCtCJ14OyYsxq0tJoJjkYMye3f7ib47y3GvlqvYo1tazr021ipVGZCa9AHeXOUJtamdcF09SpWm7Bam7CvOAfOQCrxAzNCa0w</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>FRANKS, Shannon</creator><creator>MASEK, Jeffrey G</creator><creator>HEADLEY, Rachel M. K</creator><creator>GASCH, John</creator><creator>ARVIDSON, Terry</creator><general>American Society for Photogrammetry and Remote Sensing</general><scope>IQODW</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope></search><sort><creationdate>20091101</creationdate><title>Large Area Scene Selection Interface (LASSI): Methodology of Selecting Landsat Imagery for the Global Land Survey 2005</title><author>FRANKS, Shannon ; MASEK, Jeffrey G ; HEADLEY, Rachel M. K ; GASCH, John ; ARVIDSON, Terry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p217t-6bff2b0319dd774088e43b6eb11afe9b0d7a4d59b15b34f1fb620c185b8032ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Applied geophysics</topic><topic>Biological and medical sciences</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>Internal geophysics</topic><topic>Teledetection and vegetation maps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FRANKS, Shannon</creatorcontrib><creatorcontrib>MASEK, Jeffrey G</creatorcontrib><creatorcontrib>HEADLEY, Rachel M. K</creatorcontrib><creatorcontrib>GASCH, John</creatorcontrib><creatorcontrib>ARVIDSON, Terry</creatorcontrib><collection>Pascal-Francis</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Photogrammetric engineering and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FRANKS, Shannon</au><au>MASEK, Jeffrey G</au><au>HEADLEY, Rachel M. K</au><au>GASCH, John</au><au>ARVIDSON, Terry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large Area Scene Selection Interface (LASSI): Methodology of Selecting Landsat Imagery for the Global Land Survey 2005</atitle><jtitle>Photogrammetric engineering and remote sensing</jtitle><date>2009-11-01</date><risdate>2009</risdate><volume>75</volume><issue>11</issue><spage>1287</spage><epage>1296</epage><pages>1287-1296</pages><issn>0099-1112</issn><eissn>2374-8079</eissn><coden>PERSDV</coden><abstract>The Global Land Survey (GLS) 2005 is a cloud-free, orthorectified collection of Landsat imagery acquired during the 2004 to 2007 epoch intended to support global land-cover and ecological monitoring. Due to the numerous complexities in selecting imagery for the GLS2005, NASA and the U.S. Geological Survey (USGS) sponsored the development of an automated scene selection tool, the Large Area Scene Selection Interface (LASSI), to aid in the selection of imagery for this data set. This innovative approach to scene selection applied a user-defined weighting system to various scene parameters: image cloud cover, image vegetation greenness, choice of sensor, and the ability of the Landsat-7 Scan Line Corrector (SLC)-off pair to completely fill image gaps, among others. The parameters considered in scene selection were weighted according to their relative importance to the data set, along with the algorithm's sensitivity to that weight. This paper describes the methodology and analysis that established the parameter weighting strategy, as well as the post-screening processes used in selecting the optimal data set for GLS2005.</abstract><cop>Bethesda, MD</cop><pub>American Society for Photogrammetry and Remote Sensing</pub><doi>10.14358/PERS.75.11.1287</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0099-1112
ispartof Photogrammetric engineering and remote sensing, 2009-11, Vol.75 (11), p.1287-1296
issn 0099-1112
2374-8079
language eng
recordid cdi_proquest_miscellaneous_745938818
source IngentaConnect; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animal, plant and microbial ecology
Applied geophysics
Biological and medical sciences
Earth sciences
Earth, ocean, space
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
Internal geophysics
Teledetection and vegetation maps
title Large Area Scene Selection Interface (LASSI): Methodology of Selecting Landsat Imagery for the Global Land Survey 2005
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A51%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20Area%20Scene%20Selection%20Interface%20(LASSI):%20Methodology%20of%20Selecting%20Landsat%20Imagery%20for%20the%20Global%20Land%20Survey%202005&rft.jtitle=Photogrammetric%20engineering%20and%20remote%20sensing&rft.au=FRANKS,%20Shannon&rft.date=2009-11-01&rft.volume=75&rft.issue=11&rft.spage=1287&rft.epage=1296&rft.pages=1287-1296&rft.issn=0099-1112&rft.eissn=2374-8079&rft.coden=PERSDV&rft_id=info:doi/10.14358/PERS.75.11.1287&rft_dat=%3Cproquest_pasca%3E745938818%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=745938818&rft_id=info:pmid/&rfr_iscdi=true