Atmospheric stabilization and the timing of carbon mitigation
Stabilization of atmospheric CO 2 concentrations below a pre-industrial doubling (~550 ppm) is a commonly cited target in climate policy assessment. When the rate at which future emissions can fall is assumed to be fixed, the peak atmospheric concentration – or the stabilization “frontier” – is an i...
Gespeichert in:
Veröffentlicht in: | Climatic change 2008-06, Vol.88 (3-4), p.251-265 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 265 |
---|---|
container_issue | 3-4 |
container_start_page | 251 |
container_title | Climatic change |
container_volume | 88 |
creator | Mignone, Bryan K. Socolow, Robert H. Sarmiento, Jorge L. Oppenheimer, Michael |
description | Stabilization of atmospheric CO
2
concentrations below a pre-industrial doubling (~550 ppm) is a commonly cited target in climate policy assessment. When the rate at which future emissions can fall is assumed to be fixed, the peak atmospheric concentration – or the stabilization “frontier” – is an increasing and convex function of the length of postponement. Here we find that a decline in emissions of 1% year
−1
beginning today would place the frontier near 475 ppm and that when mitigation is postponed, options disappear (on average) at the rate of ~9 ppm year
−1
, meaning that delays of more than a decade will likely preclude stabilization below a doubling. When constraints on the future decline rate of emissions are relaxed, a particular atmospheric target can be realized in many ways, with scenarios that allow longer postponement of emissions reductions requiring greater increases in the intensity of future mitigation. However, the marginal rate of substitution between future mitigation and present delay becomes prohibitively large when the balance is shifted too far toward the future, meaning that some amount of postponement cannot be fully offset by simply increasing the intensity of future mitigation. Consequently, these results suggest that a practical transition path to a given stabilization target in the most commonly cited range can allow, at most, one or two decades of delay. |
doi_str_mv | 10.1007/s10584-007-9391-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745933129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19637877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-a5cbdaec494f4cdb7ad7bbe5da49d74b4cd8568c905fe3946cba5c08cb833b0c3</originalsourceid><addsrcrecordid>eNqN0stOAyEUBmBiNLFWH8DdxIWuRmGAARYumqZekiZudE2AYVqauVSgC316GceFMVG74oTz_ZCcHADOEbxGELKbgCDlJE9lLrBAOT8AE0QZzhHh8BBMICpp6kJxDE5C2AwVK8oJuJ3Ftg_btfXOZCEq7Rr3rqLru0x1VRbXNouudd0q6-vMKK9To3XRrT7NKTiqVRPs2dc5BS93i-f5Q758un-cz5a5oZDEXFGjK2UNEaQmptJMVUxrSytFRMWITnecltwISGuLBSmNThHIjeYYa2jwFFyN7259_7qzIcrWBWObRnW23wXJCBUYo0LsI1mBS0z3kJgxlMaU5OWfsoCcEgrxvxCJEgsByV6QcTZ8ffEDbvqd79Ksk-EU44IOCI3I-D4Eb2u59a5V_k0iKIftkON2yKEctkPylCnGTEi2W1n_7eFfQx9z8bvc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198533257</pqid></control><display><type>article</type><title>Atmospheric stabilization and the timing of carbon mitigation</title><source>SpringerNature Journals</source><creator>Mignone, Bryan K. ; Socolow, Robert H. ; Sarmiento, Jorge L. ; Oppenheimer, Michael</creator><creatorcontrib>Mignone, Bryan K. ; Socolow, Robert H. ; Sarmiento, Jorge L. ; Oppenheimer, Michael</creatorcontrib><description>Stabilization of atmospheric CO
2
concentrations below a pre-industrial doubling (~550 ppm) is a commonly cited target in climate policy assessment. When the rate at which future emissions can fall is assumed to be fixed, the peak atmospheric concentration – or the stabilization “frontier” – is an increasing and convex function of the length of postponement. Here we find that a decline in emissions of 1% year
−1
beginning today would place the frontier near 475 ppm and that when mitigation is postponed, options disappear (on average) at the rate of ~9 ppm year
−1
, meaning that delays of more than a decade will likely preclude stabilization below a doubling. When constraints on the future decline rate of emissions are relaxed, a particular atmospheric target can be realized in many ways, with scenarios that allow longer postponement of emissions reductions requiring greater increases in the intensity of future mitigation. However, the marginal rate of substitution between future mitigation and present delay becomes prohibitively large when the balance is shifted too far toward the future, meaning that some amount of postponement cannot be fully offset by simply increasing the intensity of future mitigation. Consequently, these results suggest that a practical transition path to a given stabilization target in the most commonly cited range can allow, at most, one or two decades of delay.</description><identifier>ISSN: 0165-0009</identifier><identifier>EISSN: 1573-1480</identifier><identifier>DOI: 10.1007/s10584-007-9391-8</identifier><identifier>CODEN: CLCHDX</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Atmosphere ; Atmospheric Sciences ; Carbon ; Carbon dioxide ; Climate change ; Climate Change/Climate Change Impacts ; Climate policy ; Costs ; Earth and Environmental Science ; Earth Sciences ; Emissions ; Emissions control ; Environmental policy ; Ice sheets ; Net present value ; Preferences</subject><ispartof>Climatic change, 2008-06, Vol.88 (3-4), p.251-265</ispartof><rights>Springer Science+Business Media B.V. 2007</rights><rights>Springer Science+Business Media B.V. 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-a5cbdaec494f4cdb7ad7bbe5da49d74b4cd8568c905fe3946cba5c08cb833b0c3</citedby><cites>FETCH-LOGICAL-c504t-a5cbdaec494f4cdb7ad7bbe5da49d74b4cd8568c905fe3946cba5c08cb833b0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10584-007-9391-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10584-007-9391-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Mignone, Bryan K.</creatorcontrib><creatorcontrib>Socolow, Robert H.</creatorcontrib><creatorcontrib>Sarmiento, Jorge L.</creatorcontrib><creatorcontrib>Oppenheimer, Michael</creatorcontrib><title>Atmospheric stabilization and the timing of carbon mitigation</title><title>Climatic change</title><addtitle>Climatic Change</addtitle><description>Stabilization of atmospheric CO
2
concentrations below a pre-industrial doubling (~550 ppm) is a commonly cited target in climate policy assessment. When the rate at which future emissions can fall is assumed to be fixed, the peak atmospheric concentration – or the stabilization “frontier” – is an increasing and convex function of the length of postponement. Here we find that a decline in emissions of 1% year
−1
beginning today would place the frontier near 475 ppm and that when mitigation is postponed, options disappear (on average) at the rate of ~9 ppm year
−1
, meaning that delays of more than a decade will likely preclude stabilization below a doubling. When constraints on the future decline rate of emissions are relaxed, a particular atmospheric target can be realized in many ways, with scenarios that allow longer postponement of emissions reductions requiring greater increases in the intensity of future mitigation. However, the marginal rate of substitution between future mitigation and present delay becomes prohibitively large when the balance is shifted too far toward the future, meaning that some amount of postponement cannot be fully offset by simply increasing the intensity of future mitigation. Consequently, these results suggest that a practical transition path to a given stabilization target in the most commonly cited range can allow, at most, one or two decades of delay.</description><subject>Atmosphere</subject><subject>Atmospheric Sciences</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Climate change</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Climate policy</subject><subject>Costs</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Emissions</subject><subject>Emissions control</subject><subject>Environmental policy</subject><subject>Ice sheets</subject><subject>Net present value</subject><subject>Preferences</subject><issn>0165-0009</issn><issn>1573-1480</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0stOAyEUBmBiNLFWH8DdxIWuRmGAARYumqZekiZudE2AYVqauVSgC316GceFMVG74oTz_ZCcHADOEbxGELKbgCDlJE9lLrBAOT8AE0QZzhHh8BBMICpp6kJxDE5C2AwVK8oJuJ3Ftg_btfXOZCEq7Rr3rqLru0x1VRbXNouudd0q6-vMKK9To3XRrT7NKTiqVRPs2dc5BS93i-f5Q758un-cz5a5oZDEXFGjK2UNEaQmptJMVUxrSytFRMWITnecltwISGuLBSmNThHIjeYYa2jwFFyN7259_7qzIcrWBWObRnW23wXJCBUYo0LsI1mBS0z3kJgxlMaU5OWfsoCcEgrxvxCJEgsByV6QcTZ8ffEDbvqd79Ksk-EU44IOCI3I-D4Eb2u59a5V_k0iKIftkON2yKEctkPylCnGTEi2W1n_7eFfQx9z8bvc</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Mignone, Bryan K.</creator><creator>Socolow, Robert H.</creator><creator>Sarmiento, Jorge L.</creator><creator>Oppenheimer, Michael</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KL.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>SOI</scope><scope>7TV</scope><scope>7U6</scope></search><sort><creationdate>20080601</creationdate><title>Atmospheric stabilization and the timing of carbon mitigation</title><author>Mignone, Bryan K. ; Socolow, Robert H. ; Sarmiento, Jorge L. ; Oppenheimer, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-a5cbdaec494f4cdb7ad7bbe5da49d74b4cd8568c905fe3946cba5c08cb833b0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Atmosphere</topic><topic>Atmospheric Sciences</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Climate change</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Climate policy</topic><topic>Costs</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Emissions</topic><topic>Emissions control</topic><topic>Environmental policy</topic><topic>Ice sheets</topic><topic>Net present value</topic><topic>Preferences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mignone, Bryan K.</creatorcontrib><creatorcontrib>Socolow, Robert H.</creatorcontrib><creatorcontrib>Sarmiento, Jorge L.</creatorcontrib><creatorcontrib>Oppenheimer, Michael</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Climatic change</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mignone, Bryan K.</au><au>Socolow, Robert H.</au><au>Sarmiento, Jorge L.</au><au>Oppenheimer, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atmospheric stabilization and the timing of carbon mitigation</atitle><jtitle>Climatic change</jtitle><stitle>Climatic Change</stitle><date>2008-06-01</date><risdate>2008</risdate><volume>88</volume><issue>3-4</issue><spage>251</spage><epage>265</epage><pages>251-265</pages><issn>0165-0009</issn><eissn>1573-1480</eissn><coden>CLCHDX</coden><abstract>Stabilization of atmospheric CO
2
concentrations below a pre-industrial doubling (~550 ppm) is a commonly cited target in climate policy assessment. When the rate at which future emissions can fall is assumed to be fixed, the peak atmospheric concentration – or the stabilization “frontier” – is an increasing and convex function of the length of postponement. Here we find that a decline in emissions of 1% year
−1
beginning today would place the frontier near 475 ppm and that when mitigation is postponed, options disappear (on average) at the rate of ~9 ppm year
−1
, meaning that delays of more than a decade will likely preclude stabilization below a doubling. When constraints on the future decline rate of emissions are relaxed, a particular atmospheric target can be realized in many ways, with scenarios that allow longer postponement of emissions reductions requiring greater increases in the intensity of future mitigation. However, the marginal rate of substitution between future mitigation and present delay becomes prohibitively large when the balance is shifted too far toward the future, meaning that some amount of postponement cannot be fully offset by simply increasing the intensity of future mitigation. Consequently, these results suggest that a practical transition path to a given stabilization target in the most commonly cited range can allow, at most, one or two decades of delay.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10584-007-9391-8</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-0009 |
ispartof | Climatic change, 2008-06, Vol.88 (3-4), p.251-265 |
issn | 0165-0009 1573-1480 |
language | eng |
recordid | cdi_proquest_miscellaneous_745933129 |
source | SpringerNature Journals |
subjects | Atmosphere Atmospheric Sciences Carbon Carbon dioxide Climate change Climate Change/Climate Change Impacts Climate policy Costs Earth and Environmental Science Earth Sciences Emissions Emissions control Environmental policy Ice sheets Net present value Preferences |
title | Atmospheric stabilization and the timing of carbon mitigation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T03%3A17%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atmospheric%20stabilization%20and%20the%20timing%20of%20carbon%20mitigation&rft.jtitle=Climatic%20change&rft.au=Mignone,%20Bryan%20K.&rft.date=2008-06-01&rft.volume=88&rft.issue=3-4&rft.spage=251&rft.epage=265&rft.pages=251-265&rft.issn=0165-0009&rft.eissn=1573-1480&rft.coden=CLCHDX&rft_id=info:doi/10.1007/s10584-007-9391-8&rft_dat=%3Cproquest_cross%3E19637877%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198533257&rft_id=info:pmid/&rfr_iscdi=true |