Breeding Technologies to Increase Crop Production in a Changing World
To feed the several billion people living on this planet, the production of high-quality food must increase with reduced inputs, but this accomplishment will be particularly challenging in the face of global environmental change. Plant breeders need to focus on traits with the greatest potential to...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2010-02, Vol.327 (5967), p.818-822 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 822 |
---|---|
container_issue | 5967 |
container_start_page | 818 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 327 |
creator | Tester, Mark Langridge, Peter |
description | To feed the several billion people living on this planet, the production of high-quality food must increase with reduced inputs, but this accomplishment will be particularly challenging in the face of global environmental change. Plant breeders need to focus on traits with the greatest potential to increase yield. Hence, new technologies must be developed to accelerate breeding through improving genotyping and phenotyping methods and by increasing the available genetic diversity in breeding germplasm. The most gain will come from delivering these technologies in developing countries, but the technologies will have to be economically accessible and readily disseminated. Crop improvement through breeding brings immense value relative to investment and offers an effective approach to improving food security. |
doi_str_mv | 10.1126/science.1183700 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_745930054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40509897</jstor_id><sourcerecordid>40509897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-361ae0ac9f2cc6a8ef731c325cfa283f38eefb1517dc4ab12dc5dd83611f5d473</originalsourceid><addsrcrecordid>eNqNkTFvFDEQhS0EIpdATQWsaKg2GXvWu94STgmJFIlIJKK0fPb4sqc9-7B3C_49Pt2RgoZUo9H73oxmHmPvOJxzLtqLbAcKlkqjsAN4wRYceln3AvAlWwBgWyvo5Ak7zXkDULQeX7MTAVxCo_oFu_yaiNwQ1tU92ccQx7geKFdTrG6CTWQyVcsUd9Vdim620xBDNYTKVMtHE9Z728-YRveGvfJmzPT2WM_Yw9Xl_fK6vv3-7Wb55ba2spNTjS03BMb2XljbGkW-Q25RSOuNUOhREfkVl7xztjErLpyVzqli4166psMz9vkwd5fir5nypLdDtjSOJlCcs-6ach-AbJ5BolScd_L_JGKrUEpRyE__kJs4p1AO1oJjK6Bp94svDpBNMedEXu_SsDXpt-ag95npY2b6mFlxfDiOnVdbck_835AK8P4AbPIU05PegIRe9fuvfDzo3kRt1mnI-uFHcSNwBaIXDf4BY0qkhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213620464</pqid></control><display><type>article</type><title>Breeding Technologies to Increase Crop Production in a Changing World</title><source>MEDLINE</source><source>American Association for the Advancement of Science</source><source>JSTOR</source><creator>Tester, Mark ; Langridge, Peter</creator><creatorcontrib>Tester, Mark ; Langridge, Peter</creatorcontrib><description>To feed the several billion people living on this planet, the production of high-quality food must increase with reduced inputs, but this accomplishment will be particularly challenging in the face of global environmental change. Plant breeders need to focus on traits with the greatest potential to increase yield. Hence, new technologies must be developed to accelerate breeding through improving genotyping and phenotyping methods and by increasing the available genetic diversity in breeding germplasm. The most gain will come from delivering these technologies in developing countries, but the technologies will have to be economically accessible and readily disseminated. Crop improvement through breeding brings immense value relative to investment and offers an effective approach to improving food security.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1183700</identifier><identifier>PMID: 20150489</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Agricultural production ; Agriculture - methods ; Biotechnology ; Breeding ; Crop production ; Crop science ; Crops ; Crops, Agricultural - genetics ; Crops, Agricultural - growth & development ; Developing Countries ; Environment ; Food security ; Food, Genetically Modified ; Genes, Plant ; Genetic loci ; Genetic Markers ; Genetic Techniques ; Genetic Variation ; Genotype ; Phenotype ; Phenotypic traits ; Plant reproduction ; Plants ; Reviews ; Selective breeding ; Sustainable agriculture ; Transgenic plants ; Wheat</subject><ispartof>Science (American Association for the Advancement of Science), 2010-02, Vol.327 (5967), p.818-822</ispartof><rights>Copyright 2010 American Association for the Advancement of Science</rights><rights>Copyright © 2010, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-361ae0ac9f2cc6a8ef731c325cfa283f38eefb1517dc4ab12dc5dd83611f5d473</citedby><cites>FETCH-LOGICAL-c575t-361ae0ac9f2cc6a8ef731c325cfa283f38eefb1517dc4ab12dc5dd83611f5d473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40509897$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40509897$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,2884,2885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20150489$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tester, Mark</creatorcontrib><creatorcontrib>Langridge, Peter</creatorcontrib><title>Breeding Technologies to Increase Crop Production in a Changing World</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>To feed the several billion people living on this planet, the production of high-quality food must increase with reduced inputs, but this accomplishment will be particularly challenging in the face of global environmental change. Plant breeders need to focus on traits with the greatest potential to increase yield. Hence, new technologies must be developed to accelerate breeding through improving genotyping and phenotyping methods and by increasing the available genetic diversity in breeding germplasm. The most gain will come from delivering these technologies in developing countries, but the technologies will have to be economically accessible and readily disseminated. Crop improvement through breeding brings immense value relative to investment and offers an effective approach to improving food security.</description><subject>Agricultural production</subject><subject>Agriculture - methods</subject><subject>Biotechnology</subject><subject>Breeding</subject><subject>Crop production</subject><subject>Crop science</subject><subject>Crops</subject><subject>Crops, Agricultural - genetics</subject><subject>Crops, Agricultural - growth & development</subject><subject>Developing Countries</subject><subject>Environment</subject><subject>Food security</subject><subject>Food, Genetically Modified</subject><subject>Genes, Plant</subject><subject>Genetic loci</subject><subject>Genetic Markers</subject><subject>Genetic Techniques</subject><subject>Genetic Variation</subject><subject>Genotype</subject><subject>Phenotype</subject><subject>Phenotypic traits</subject><subject>Plant reproduction</subject><subject>Plants</subject><subject>Reviews</subject><subject>Selective breeding</subject><subject>Sustainable agriculture</subject><subject>Transgenic plants</subject><subject>Wheat</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkTFvFDEQhS0EIpdATQWsaKg2GXvWu94STgmJFIlIJKK0fPb4sqc9-7B3C_49Pt2RgoZUo9H73oxmHmPvOJxzLtqLbAcKlkqjsAN4wRYceln3AvAlWwBgWyvo5Ak7zXkDULQeX7MTAVxCo_oFu_yaiNwQ1tU92ccQx7geKFdTrG6CTWQyVcsUd9Vdim620xBDNYTKVMtHE9Z728-YRveGvfJmzPT2WM_Yw9Xl_fK6vv3-7Wb55ba2spNTjS03BMb2XljbGkW-Q25RSOuNUOhREfkVl7xztjErLpyVzqli4166psMz9vkwd5fir5nypLdDtjSOJlCcs-6ach-AbJ5BolScd_L_JGKrUEpRyE__kJs4p1AO1oJjK6Bp94svDpBNMedEXu_SsDXpt-ag95npY2b6mFlxfDiOnVdbck_835AK8P4AbPIU05PegIRe9fuvfDzo3kRt1mnI-uFHcSNwBaIXDf4BY0qkhQ</recordid><startdate>20100212</startdate><enddate>20100212</enddate><creator>Tester, Mark</creator><creator>Langridge, Peter</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7ST</scope><scope>7U6</scope></search><sort><creationdate>20100212</creationdate><title>Breeding Technologies to Increase Crop Production in a Changing World</title><author>Tester, Mark ; Langridge, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-361ae0ac9f2cc6a8ef731c325cfa283f38eefb1517dc4ab12dc5dd83611f5d473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Agricultural production</topic><topic>Agriculture - methods</topic><topic>Biotechnology</topic><topic>Breeding</topic><topic>Crop production</topic><topic>Crop science</topic><topic>Crops</topic><topic>Crops, Agricultural - genetics</topic><topic>Crops, Agricultural - growth & development</topic><topic>Developing Countries</topic><topic>Environment</topic><topic>Food security</topic><topic>Food, Genetically Modified</topic><topic>Genes, Plant</topic><topic>Genetic loci</topic><topic>Genetic Markers</topic><topic>Genetic Techniques</topic><topic>Genetic Variation</topic><topic>Genotype</topic><topic>Phenotype</topic><topic>Phenotypic traits</topic><topic>Plant reproduction</topic><topic>Plants</topic><topic>Reviews</topic><topic>Selective breeding</topic><topic>Sustainable agriculture</topic><topic>Transgenic plants</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tester, Mark</creatorcontrib><creatorcontrib>Langridge, Peter</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tester, Mark</au><au>Langridge, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breeding Technologies to Increase Crop Production in a Changing World</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2010-02-12</date><risdate>2010</risdate><volume>327</volume><issue>5967</issue><spage>818</spage><epage>822</epage><pages>818-822</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>To feed the several billion people living on this planet, the production of high-quality food must increase with reduced inputs, but this accomplishment will be particularly challenging in the face of global environmental change. Plant breeders need to focus on traits with the greatest potential to increase yield. Hence, new technologies must be developed to accelerate breeding through improving genotyping and phenotyping methods and by increasing the available genetic diversity in breeding germplasm. The most gain will come from delivering these technologies in developing countries, but the technologies will have to be economically accessible and readily disseminated. Crop improvement through breeding brings immense value relative to investment and offers an effective approach to improving food security.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>20150489</pmid><doi>10.1126/science.1183700</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2010-02, Vol.327 (5967), p.818-822 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_745930054 |
source | MEDLINE; American Association for the Advancement of Science; JSTOR |
subjects | Agricultural production Agriculture - methods Biotechnology Breeding Crop production Crop science Crops Crops, Agricultural - genetics Crops, Agricultural - growth & development Developing Countries Environment Food security Food, Genetically Modified Genes, Plant Genetic loci Genetic Markers Genetic Techniques Genetic Variation Genotype Phenotype Phenotypic traits Plant reproduction Plants Reviews Selective breeding Sustainable agriculture Transgenic plants Wheat |
title | Breeding Technologies to Increase Crop Production in a Changing World |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A26%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breeding%20Technologies%20to%20Increase%20Crop%20Production%20in%20a%20Changing%20World&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Tester,%20Mark&rft.date=2010-02-12&rft.volume=327&rft.issue=5967&rft.spage=818&rft.epage=822&rft.pages=818-822&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1183700&rft_dat=%3Cjstor_proqu%3E40509897%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213620464&rft_id=info:pmid/20150489&rft_jstor_id=40509897&rfr_iscdi=true |