Comparison Between Large-Eddy Simulation and Reynolds-Averaged Navier-Stokes Computations for the MUST Field Experiment. Part I: Study of the Flow for an Incident Wind Directed Perpendicularly to the Front Array of Containers

The large-eddy simulation (LES) and Reynolds-averaged Navier-Stokes (RANS) methodologies are used to simulate the air flow inside the container's array geometry of the Mock Urban Setting Test (MUST) field experiment. Both tools are assessed and compared in a configuration for which the incident...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boundary-layer meteorology 2010-04, Vol.135 (1), p.109-132
Hauptverfasser: Santiago, J. L, Dejoan, A, Martilli, A, Martin, F, Pinelli, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 132
container_issue 1
container_start_page 109
container_title Boundary-layer meteorology
container_volume 135
creator Santiago, J. L
Dejoan, A
Martilli, A
Martin, F
Pinelli, A
description The large-eddy simulation (LES) and Reynolds-averaged Navier-Stokes (RANS) methodologies are used to simulate the air flow inside the container's array geometry of the Mock Urban Setting Test (MUST) field experiment. Both tools are assessed and compared in a configuration for which the incident wind direction is perpendicular to the front array. The assessment is carried out against available wind-tunnel data. Effects of including small geometrical irregularities present in the experiments are analysed by considering LES and RANS calculations on two geometries: an idealized one with a perfect alignment and an identical shape of the containers, and a second one including the small irregularities considered in the experiment. These effects are assessed in terms of the local time-mean average and as well in terms of spatial average properties (relevant in atmospheric modelling) given for the velocity and turbulent fields. The structural flow properties obtained using LES and RANS are also compared. The inclusion of geometrical irregularities is found significant on the local time-mean flow properties, in particular the repeated flow patterns encountered in a perfect regular geometry is broken. LES and RANS provide close results for the local mean streamwise velocity profiles and shear-stress profiles, however the LES predictions are closer to the experimental values for the local vertical mean velocity. When considering the spatial average flow properties, the effects of geometrical irregularities are found insignificant and LES and RANS provide similar results.
doi_str_mv 10.1007/s10546-010-9466-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_745929648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A333711593</galeid><sourcerecordid>A333711593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c571t-69ee924fc09317025858e77c70aa7a6dde4d1e6518720c1291e83e892ddfc0b53</originalsourceid><addsrcrecordid>eNqNks2O0zAUhSMEEmXgAVhhISHYpPgniRN2ndJCpQIjOhVLy8Q3xUNqF9udoY_Lm3DbjEBiMUJeWLa_c-617smyp4yOGaXydWS0LKqcMpo3RVXl4l42YqUUOSskv5-NKKVVXgtWPMwexXiFR8lKOsp-Tf12p4ON3pFzSDcAjix12EA-M-ZAVna773Wy-KqdIZ_h4HxvYj65hqA3YMhHfW0h5Kvkv0MkR7N9OvGRdD6Q9A3Ih_Xqkswt9IbMfu4g2C24NCYXOiSyeENWaY-FfHdi572_OQm1IwvXWoMo-WKx9FsboE1Y8QLCDpyxLTYW-gNJflAGj-gkBH0ym-JJWwchPs4edLqP8OR2P8vW89nl9H2-_PRuMZ0s87aULOVVA9DwomtpI5ikvKzLGqRsJdVa6soYKAyDqmS15LRlvGFQC6gbbgxqvpbiLHs5-O6C_7GHmNTWxhb6Xjvw-6hkUTa8qYr6P0iB1Tk9er66k2QVThHnTo-mz_9Br_w-OPyxErKsaowHRWg8QBvdg7Ku8ynoFpeBrW29g87i_UQIIRkrG4ECNgja4GMM0Kkdzk-Hg2JUHYOnhuApDJ46Bk8dNS9uO9Gx1X0XNA4y_hFyXhaNpBVyfOAiPrkNhL8d32X-bBB12iu9weCq9YpTJiirmagrLn4Dc6_yNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>375680540</pqid></control><display><type>article</type><title>Comparison Between Large-Eddy Simulation and Reynolds-Averaged Navier-Stokes Computations for the MUST Field Experiment. Part I: Study of the Flow for an Incident Wind Directed Perpendicularly to the Front Array of Containers</title><source>SpringerLink Journals (MCLS)</source><creator>Santiago, J. L ; Dejoan, A ; Martilli, A ; Martin, F ; Pinelli, A</creator><creatorcontrib>Santiago, J. L ; Dejoan, A ; Martilli, A ; Martin, F ; Pinelli, A</creatorcontrib><description>The large-eddy simulation (LES) and Reynolds-averaged Navier-Stokes (RANS) methodologies are used to simulate the air flow inside the container's array geometry of the Mock Urban Setting Test (MUST) field experiment. Both tools are assessed and compared in a configuration for which the incident wind direction is perpendicular to the front array. The assessment is carried out against available wind-tunnel data. Effects of including small geometrical irregularities present in the experiments are analysed by considering LES and RANS calculations on two geometries: an idealized one with a perfect alignment and an identical shape of the containers, and a second one including the small irregularities considered in the experiment. These effects are assessed in terms of the local time-mean average and as well in terms of spatial average properties (relevant in atmospheric modelling) given for the velocity and turbulent fields. The structural flow properties obtained using LES and RANS are also compared. The inclusion of geometrical irregularities is found significant on the local time-mean flow properties, in particular the repeated flow patterns encountered in a perfect regular geometry is broken. LES and RANS provide close results for the local mean streamwise velocity profiles and shear-stress profiles, however the LES predictions are closer to the experimental values for the local vertical mean velocity. When considering the spatial average flow properties, the effects of geometrical irregularities are found insignificant and LES and RANS provide similar results.</description><identifier>ISSN: 0006-8314</identifier><identifier>EISSN: 1573-1472</identifier><identifier>DOI: 10.1007/s10546-010-9466-3</identifier><identifier>CODEN: BLMEBR</identifier><language>eng</language><publisher>Dordrecht: Dordrecht : Springer Netherlands</publisher><subject>Air flow ; Applied sciences ; Arrays ; Assessments ; Atmospheric pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Atmospherics ; Average flow ; Comparative analysis ; Computers ; Containers ; Convection, turbulence, diffusion. Boundary layer structure and dynamics ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Field study ; Flow around array of obstacles ; Flow pattern ; Fluid dynamics ; Inclusions ; Irregularities ; Large eddy simulation ; Meteorology ; MUST experiment ; Navier-Stokes equations ; Pollutants physicochemistry study: properties, effects, reactions, transport and distribution ; Pollution ; Reynolds-averaged Navier-Stokes ; Simulation ; Urban areas ; Wind tunnels</subject><ispartof>Boundary-layer meteorology, 2010-04, Vol.135 (1), p.109-132</ispartof><rights>Springer Science+Business Media B.V. 2010</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2010 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c571t-69ee924fc09317025858e77c70aa7a6dde4d1e6518720c1291e83e892ddfc0b53</citedby><cites>FETCH-LOGICAL-c571t-69ee924fc09317025858e77c70aa7a6dde4d1e6518720c1291e83e892ddfc0b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10546-010-9466-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10546-010-9466-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22549706$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Santiago, J. L</creatorcontrib><creatorcontrib>Dejoan, A</creatorcontrib><creatorcontrib>Martilli, A</creatorcontrib><creatorcontrib>Martin, F</creatorcontrib><creatorcontrib>Pinelli, A</creatorcontrib><title>Comparison Between Large-Eddy Simulation and Reynolds-Averaged Navier-Stokes Computations for the MUST Field Experiment. Part I: Study of the Flow for an Incident Wind Directed Perpendicularly to the Front Array of Containers</title><title>Boundary-layer meteorology</title><addtitle>Boundary-Layer Meteorol</addtitle><description>The large-eddy simulation (LES) and Reynolds-averaged Navier-Stokes (RANS) methodologies are used to simulate the air flow inside the container's array geometry of the Mock Urban Setting Test (MUST) field experiment. Both tools are assessed and compared in a configuration for which the incident wind direction is perpendicular to the front array. The assessment is carried out against available wind-tunnel data. Effects of including small geometrical irregularities present in the experiments are analysed by considering LES and RANS calculations on two geometries: an idealized one with a perfect alignment and an identical shape of the containers, and a second one including the small irregularities considered in the experiment. These effects are assessed in terms of the local time-mean average and as well in terms of spatial average properties (relevant in atmospheric modelling) given for the velocity and turbulent fields. The structural flow properties obtained using LES and RANS are also compared. The inclusion of geometrical irregularities is found significant on the local time-mean flow properties, in particular the repeated flow patterns encountered in a perfect regular geometry is broken. LES and RANS provide close results for the local mean streamwise velocity profiles and shear-stress profiles, however the LES predictions are closer to the experimental values for the local vertical mean velocity. When considering the spatial average flow properties, the effects of geometrical irregularities are found insignificant and LES and RANS provide similar results.</description><subject>Air flow</subject><subject>Applied sciences</subject><subject>Arrays</subject><subject>Assessments</subject><subject>Atmospheric pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Atmospherics</subject><subject>Average flow</subject><subject>Comparative analysis</subject><subject>Computers</subject><subject>Containers</subject><subject>Convection, turbulence, diffusion. Boundary layer structure and dynamics</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Field study</subject><subject>Flow around array of obstacles</subject><subject>Flow pattern</subject><subject>Fluid dynamics</subject><subject>Inclusions</subject><subject>Irregularities</subject><subject>Large eddy simulation</subject><subject>Meteorology</subject><subject>MUST experiment</subject><subject>Navier-Stokes equations</subject><subject>Pollutants physicochemistry study: properties, effects, reactions, transport and distribution</subject><subject>Pollution</subject><subject>Reynolds-averaged Navier-Stokes</subject><subject>Simulation</subject><subject>Urban areas</subject><subject>Wind tunnels</subject><issn>0006-8314</issn><issn>1573-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNks2O0zAUhSMEEmXgAVhhISHYpPgniRN2ndJCpQIjOhVLy8Q3xUNqF9udoY_Lm3DbjEBiMUJeWLa_c-617smyp4yOGaXydWS0LKqcMpo3RVXl4l42YqUUOSskv5-NKKVVXgtWPMwexXiFR8lKOsp-Tf12p4ON3pFzSDcAjix12EA-M-ZAVna773Wy-KqdIZ_h4HxvYj65hqA3YMhHfW0h5Kvkv0MkR7N9OvGRdD6Q9A3Ih_Xqkswt9IbMfu4g2C24NCYXOiSyeENWaY-FfHdi572_OQm1IwvXWoMo-WKx9FsboE1Y8QLCDpyxLTYW-gNJflAGj-gkBH0ym-JJWwchPs4edLqP8OR2P8vW89nl9H2-_PRuMZ0s87aULOVVA9DwomtpI5ikvKzLGqRsJdVa6soYKAyDqmS15LRlvGFQC6gbbgxqvpbiLHs5-O6C_7GHmNTWxhb6Xjvw-6hkUTa8qYr6P0iB1Tk9er66k2QVThHnTo-mz_9Br_w-OPyxErKsaowHRWg8QBvdg7Ku8ynoFpeBrW29g87i_UQIIRkrG4ECNgja4GMM0Kkdzk-Hg2JUHYOnhuApDJ46Bk8dNS9uO9Gx1X0XNA4y_hFyXhaNpBVyfOAiPrkNhL8d32X-bBB12iu9weCq9YpTJiirmagrLn4Dc6_yNA</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Santiago, J. L</creator><creator>Dejoan, A</creator><creator>Martilli, A</creator><creator>Martin, F</creator><creator>Pinelli, A</creator><general>Dordrecht : Springer Netherlands</general><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20100401</creationdate><title>Comparison Between Large-Eddy Simulation and Reynolds-Averaged Navier-Stokes Computations for the MUST Field Experiment. Part I: Study of the Flow for an Incident Wind Directed Perpendicularly to the Front Array of Containers</title><author>Santiago, J. L ; Dejoan, A ; Martilli, A ; Martin, F ; Pinelli, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c571t-69ee924fc09317025858e77c70aa7a6dde4d1e6518720c1291e83e892ddfc0b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Air flow</topic><topic>Applied sciences</topic><topic>Arrays</topic><topic>Assessments</topic><topic>Atmospheric pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Atmospherics</topic><topic>Average flow</topic><topic>Comparative analysis</topic><topic>Computers</topic><topic>Containers</topic><topic>Convection, turbulence, diffusion. Boundary layer structure and dynamics</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Field study</topic><topic>Flow around array of obstacles</topic><topic>Flow pattern</topic><topic>Fluid dynamics</topic><topic>Inclusions</topic><topic>Irregularities</topic><topic>Large eddy simulation</topic><topic>Meteorology</topic><topic>MUST experiment</topic><topic>Navier-Stokes equations</topic><topic>Pollutants physicochemistry study: properties, effects, reactions, transport and distribution</topic><topic>Pollution</topic><topic>Reynolds-averaged Navier-Stokes</topic><topic>Simulation</topic><topic>Urban areas</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santiago, J. L</creatorcontrib><creatorcontrib>Dejoan, A</creatorcontrib><creatorcontrib>Martilli, A</creatorcontrib><creatorcontrib>Martin, F</creatorcontrib><creatorcontrib>Pinelli, A</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Boundary-layer meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santiago, J. L</au><au>Dejoan, A</au><au>Martilli, A</au><au>Martin, F</au><au>Pinelli, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison Between Large-Eddy Simulation and Reynolds-Averaged Navier-Stokes Computations for the MUST Field Experiment. Part I: Study of the Flow for an Incident Wind Directed Perpendicularly to the Front Array of Containers</atitle><jtitle>Boundary-layer meteorology</jtitle><stitle>Boundary-Layer Meteorol</stitle><date>2010-04-01</date><risdate>2010</risdate><volume>135</volume><issue>1</issue><spage>109</spage><epage>132</epage><pages>109-132</pages><issn>0006-8314</issn><eissn>1573-1472</eissn><coden>BLMEBR</coden><abstract>The large-eddy simulation (LES) and Reynolds-averaged Navier-Stokes (RANS) methodologies are used to simulate the air flow inside the container's array geometry of the Mock Urban Setting Test (MUST) field experiment. Both tools are assessed and compared in a configuration for which the incident wind direction is perpendicular to the front array. The assessment is carried out against available wind-tunnel data. Effects of including small geometrical irregularities present in the experiments are analysed by considering LES and RANS calculations on two geometries: an idealized one with a perfect alignment and an identical shape of the containers, and a second one including the small irregularities considered in the experiment. These effects are assessed in terms of the local time-mean average and as well in terms of spatial average properties (relevant in atmospheric modelling) given for the velocity and turbulent fields. The structural flow properties obtained using LES and RANS are also compared. The inclusion of geometrical irregularities is found significant on the local time-mean flow properties, in particular the repeated flow patterns encountered in a perfect regular geometry is broken. LES and RANS provide close results for the local mean streamwise velocity profiles and shear-stress profiles, however the LES predictions are closer to the experimental values for the local vertical mean velocity. When considering the spatial average flow properties, the effects of geometrical irregularities are found insignificant and LES and RANS provide similar results.</abstract><cop>Dordrecht</cop><pub>Dordrecht : Springer Netherlands</pub><doi>10.1007/s10546-010-9466-3</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-8314
ispartof Boundary-layer meteorology, 2010-04, Vol.135 (1), p.109-132
issn 0006-8314
1573-1472
language eng
recordid cdi_proquest_miscellaneous_745929648
source SpringerLink Journals (MCLS)
subjects Air flow
Applied sciences
Arrays
Assessments
Atmospheric pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
Atmospherics
Average flow
Comparative analysis
Computers
Containers
Convection, turbulence, diffusion. Boundary layer structure and dynamics
Earth and Environmental Science
Earth Sciences
Earth, ocean, space
Exact sciences and technology
External geophysics
Field study
Flow around array of obstacles
Flow pattern
Fluid dynamics
Inclusions
Irregularities
Large eddy simulation
Meteorology
MUST experiment
Navier-Stokes equations
Pollutants physicochemistry study: properties, effects, reactions, transport and distribution
Pollution
Reynolds-averaged Navier-Stokes
Simulation
Urban areas
Wind tunnels
title Comparison Between Large-Eddy Simulation and Reynolds-Averaged Navier-Stokes Computations for the MUST Field Experiment. Part I: Study of the Flow for an Incident Wind Directed Perpendicularly to the Front Array of Containers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A59%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20Between%20Large-Eddy%20Simulation%20and%20Reynolds-Averaged%20Navier-Stokes%20Computations%20for%20the%20MUST%20Field%20Experiment.%20Part%20I:%20Study%20of%20the%20Flow%20for%20an%20Incident%20Wind%20Directed%20Perpendicularly%20to%20the%20Front%20Array%20of%20Containers&rft.jtitle=Boundary-layer%20meteorology&rft.au=Santiago,%20J.%20L&rft.date=2010-04-01&rft.volume=135&rft.issue=1&rft.spage=109&rft.epage=132&rft.pages=109-132&rft.issn=0006-8314&rft.eissn=1573-1472&rft.coden=BLMEBR&rft_id=info:doi/10.1007/s10546-010-9466-3&rft_dat=%3Cgale_proqu%3EA333711593%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=375680540&rft_id=info:pmid/&rft_galeid=A333711593&rfr_iscdi=true