Diamond-Structured Titania Photonic-Bandgap Crystals from Biological Templates

Photonic crystal scales with a diamond‐based lattice from the weevil Lamprocyphus augustus are transformed into a high‐dielectric titania replica by a biotemplating double‐imprint route. Multidirectional optical reflectance spectroscopy of the replicated structure gives an angle‐independent reflecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2010-01, Vol.22 (1), p.107-110
Hauptverfasser: Galusha, Jeremy W., Jorgensen, Matthew R., Bartl, Michael H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110
container_issue 1
container_start_page 107
container_title Advanced materials (Weinheim)
container_volume 22
creator Galusha, Jeremy W.
Jorgensen, Matthew R.
Bartl, Michael H.
description Photonic crystal scales with a diamond‐based lattice from the weevil Lamprocyphus augustus are transformed into a high‐dielectric titania replica by a biotemplating double‐imprint route. Multidirectional optical reflectance spectroscopy of the replicated structure gives an angle‐independent reflection band in the visible spectrum, in agreement with photonic band structure calculations, which reveal the formation of a complete photonic bandgap at visible frequencies.
doi_str_mv 10.1002/adma.200902852
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745926838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743668006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5122-a6456eb1f4ee0fd545f422d48c25880e837003e0d36f1191369d5335fb40e2793</originalsourceid><addsrcrecordid>eNqN0c9v0zAcBXALgVgZXDmi3Dil-_pn7GPbsYE2NiSKJnGx3PibYUjizk4E_e_J1FFx207v8nnv8gh5S2FOAdiJ852bMwADTEv2jMyoZLQUYORzMgPDZWmU0EfkVc4_YWIK1EtyxIDRqoJqRq5Og-ti78uvQxrrYUzoi3UYXB9c8eVHHGIf6nLpen_rtsUq7fLg2lw0KXbFMsQ23obatcUau23rBsyvyYtmAvjmIY_Jt7MP69XH8vL6_NNqcVnWkjJWOiWkwg1tBCI0XgrZCMa80DWTWgNqXgFwBM9VQ6mhXBkvOZfNRgCyyvBj8n6_u03xbsQ82C7kGtvW9RjHbCshDVOa6ydIrpQGUI9LzqkW1IhJzveyTjHnhI3dptC5tLMU7P0t9v4We7hlKrx7mB43HfoD__fDBMwe_A4t7h6Zs4vTz4v_x8t9N-QB_xy6Lv2yquKVtDdX55Z-v-HmYnlmV_wvGSemtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733184194</pqid></control><display><type>article</type><title>Diamond-Structured Titania Photonic-Bandgap Crystals from Biological Templates</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Galusha, Jeremy W. ; Jorgensen, Matthew R. ; Bartl, Michael H.</creator><creatorcontrib>Galusha, Jeremy W. ; Jorgensen, Matthew R. ; Bartl, Michael H.</creatorcontrib><description>Photonic crystal scales with a diamond‐based lattice from the weevil Lamprocyphus augustus are transformed into a high‐dielectric titania replica by a biotemplating double‐imprint route. Multidirectional optical reflectance spectroscopy of the replicated structure gives an angle‐independent reflection band in the visible spectrum, in agreement with photonic band structure calculations, which reveal the formation of a complete photonic bandgap at visible frequencies.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.200902852</identifier><identifier>PMID: 20217707</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Animals ; Biophotonics ; Biotemplating ; Crystallization ; Diamond - chemistry ; Photonic crystals ; Photons ; Titania ; Titanium - chemistry ; Weevils - chemistry</subject><ispartof>Advanced materials (Weinheim), 2010-01, Vol.22 (1), p.107-110</ispartof><rights>Copyright © 2010 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5122-a6456eb1f4ee0fd545f422d48c25880e837003e0d36f1191369d5335fb40e2793</citedby><cites>FETCH-LOGICAL-c5122-a6456eb1f4ee0fd545f422d48c25880e837003e0d36f1191369d5335fb40e2793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.200902852$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.200902852$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20217707$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Galusha, Jeremy W.</creatorcontrib><creatorcontrib>Jorgensen, Matthew R.</creatorcontrib><creatorcontrib>Bartl, Michael H.</creatorcontrib><title>Diamond-Structured Titania Photonic-Bandgap Crystals from Biological Templates</title><title>Advanced materials (Weinheim)</title><addtitle>Adv. Mater</addtitle><description>Photonic crystal scales with a diamond‐based lattice from the weevil Lamprocyphus augustus are transformed into a high‐dielectric titania replica by a biotemplating double‐imprint route. Multidirectional optical reflectance spectroscopy of the replicated structure gives an angle‐independent reflection band in the visible spectrum, in agreement with photonic band structure calculations, which reveal the formation of a complete photonic bandgap at visible frequencies.</description><subject>Animals</subject><subject>Biophotonics</subject><subject>Biotemplating</subject><subject>Crystallization</subject><subject>Diamond - chemistry</subject><subject>Photonic crystals</subject><subject>Photons</subject><subject>Titania</subject><subject>Titanium - chemistry</subject><subject>Weevils - chemistry</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0c9v0zAcBXALgVgZXDmi3Dil-_pn7GPbsYE2NiSKJnGx3PibYUjizk4E_e_J1FFx207v8nnv8gh5S2FOAdiJ852bMwADTEv2jMyoZLQUYORzMgPDZWmU0EfkVc4_YWIK1EtyxIDRqoJqRq5Og-ti78uvQxrrYUzoi3UYXB9c8eVHHGIf6nLpen_rtsUq7fLg2lw0KXbFMsQ23obatcUau23rBsyvyYtmAvjmIY_Jt7MP69XH8vL6_NNqcVnWkjJWOiWkwg1tBCI0XgrZCMa80DWTWgNqXgFwBM9VQ6mhXBkvOZfNRgCyyvBj8n6_u03xbsQ82C7kGtvW9RjHbCshDVOa6ydIrpQGUI9LzqkW1IhJzveyTjHnhI3dptC5tLMU7P0t9v4We7hlKrx7mB43HfoD__fDBMwe_A4t7h6Zs4vTz4v_x8t9N-QB_xy6Lv2yquKVtDdX55Z-v-HmYnlmV_wvGSemtA</recordid><startdate>20100105</startdate><enddate>20100105</enddate><creator>Galusha, Jeremy W.</creator><creator>Jorgensen, Matthew R.</creator><creator>Bartl, Michael H.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7SS</scope></search><sort><creationdate>20100105</creationdate><title>Diamond-Structured Titania Photonic-Bandgap Crystals from Biological Templates</title><author>Galusha, Jeremy W. ; Jorgensen, Matthew R. ; Bartl, Michael H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5122-a6456eb1f4ee0fd545f422d48c25880e837003e0d36f1191369d5335fb40e2793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Biophotonics</topic><topic>Biotemplating</topic><topic>Crystallization</topic><topic>Diamond - chemistry</topic><topic>Photonic crystals</topic><topic>Photons</topic><topic>Titania</topic><topic>Titanium - chemistry</topic><topic>Weevils - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galusha, Jeremy W.</creatorcontrib><creatorcontrib>Jorgensen, Matthew R.</creatorcontrib><creatorcontrib>Bartl, Michael H.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Entomology Abstracts (Full archive)</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galusha, Jeremy W.</au><au>Jorgensen, Matthew R.</au><au>Bartl, Michael H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diamond-Structured Titania Photonic-Bandgap Crystals from Biological Templates</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv. Mater</addtitle><date>2010-01-05</date><risdate>2010</risdate><volume>22</volume><issue>1</issue><spage>107</spage><epage>110</epage><pages>107-110</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Photonic crystal scales with a diamond‐based lattice from the weevil Lamprocyphus augustus are transformed into a high‐dielectric titania replica by a biotemplating double‐imprint route. Multidirectional optical reflectance spectroscopy of the replicated structure gives an angle‐independent reflection band in the visible spectrum, in agreement with photonic band structure calculations, which reveal the formation of a complete photonic bandgap at visible frequencies.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>20217707</pmid><doi>10.1002/adma.200902852</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2010-01, Vol.22 (1), p.107-110
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_745926838
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Biophotonics
Biotemplating
Crystallization
Diamond - chemistry
Photonic crystals
Photons
Titania
Titanium - chemistry
Weevils - chemistry
title Diamond-Structured Titania Photonic-Bandgap Crystals from Biological Templates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A29%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diamond-Structured%20Titania%20Photonic-Bandgap%20Crystals%20from%20Biological%20Templates&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Galusha,%20Jeremy%20W.&rft.date=2010-01-05&rft.volume=22&rft.issue=1&rft.spage=107&rft.epage=110&rft.pages=107-110&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.200902852&rft_dat=%3Cproquest_cross%3E743668006%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733184194&rft_id=info:pmid/20217707&rfr_iscdi=true