Diamond-Structured Titania Photonic-Bandgap Crystals from Biological Templates
Photonic crystal scales with a diamond‐based lattice from the weevil Lamprocyphus augustus are transformed into a high‐dielectric titania replica by a biotemplating double‐imprint route. Multidirectional optical reflectance spectroscopy of the replicated structure gives an angle‐independent reflecti...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2010-01, Vol.22 (1), p.107-110 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110 |
---|---|
container_issue | 1 |
container_start_page | 107 |
container_title | Advanced materials (Weinheim) |
container_volume | 22 |
creator | Galusha, Jeremy W. Jorgensen, Matthew R. Bartl, Michael H. |
description | Photonic crystal scales with a diamond‐based lattice from the weevil Lamprocyphus augustus are transformed into a high‐dielectric titania replica by a biotemplating double‐imprint route. Multidirectional optical reflectance spectroscopy of the replicated structure gives an angle‐independent reflection band in the visible spectrum, in agreement with photonic band structure calculations, which reveal the formation of a complete photonic bandgap at visible frequencies. |
doi_str_mv | 10.1002/adma.200902852 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745926838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743668006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5122-a6456eb1f4ee0fd545f422d48c25880e837003e0d36f1191369d5335fb40e2793</originalsourceid><addsrcrecordid>eNqN0c9v0zAcBXALgVgZXDmi3Dil-_pn7GPbsYE2NiSKJnGx3PibYUjizk4E_e_J1FFx207v8nnv8gh5S2FOAdiJ852bMwADTEv2jMyoZLQUYORzMgPDZWmU0EfkVc4_YWIK1EtyxIDRqoJqRq5Og-ti78uvQxrrYUzoi3UYXB9c8eVHHGIf6nLpen_rtsUq7fLg2lw0KXbFMsQ23obatcUau23rBsyvyYtmAvjmIY_Jt7MP69XH8vL6_NNqcVnWkjJWOiWkwg1tBCI0XgrZCMa80DWTWgNqXgFwBM9VQ6mhXBkvOZfNRgCyyvBj8n6_u03xbsQ82C7kGtvW9RjHbCshDVOa6ydIrpQGUI9LzqkW1IhJzveyTjHnhI3dptC5tLMU7P0t9v4We7hlKrx7mB43HfoD__fDBMwe_A4t7h6Zs4vTz4v_x8t9N-QB_xy6Lv2yquKVtDdX55Z-v-HmYnlmV_wvGSemtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733184194</pqid></control><display><type>article</type><title>Diamond-Structured Titania Photonic-Bandgap Crystals from Biological Templates</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Galusha, Jeremy W. ; Jorgensen, Matthew R. ; Bartl, Michael H.</creator><creatorcontrib>Galusha, Jeremy W. ; Jorgensen, Matthew R. ; Bartl, Michael H.</creatorcontrib><description>Photonic crystal scales with a diamond‐based lattice from the weevil Lamprocyphus augustus are transformed into a high‐dielectric titania replica by a biotemplating double‐imprint route. Multidirectional optical reflectance spectroscopy of the replicated structure gives an angle‐independent reflection band in the visible spectrum, in agreement with photonic band structure calculations, which reveal the formation of a complete photonic bandgap at visible frequencies.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.200902852</identifier><identifier>PMID: 20217707</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Animals ; Biophotonics ; Biotemplating ; Crystallization ; Diamond - chemistry ; Photonic crystals ; Photons ; Titania ; Titanium - chemistry ; Weevils - chemistry</subject><ispartof>Advanced materials (Weinheim), 2010-01, Vol.22 (1), p.107-110</ispartof><rights>Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5122-a6456eb1f4ee0fd545f422d48c25880e837003e0d36f1191369d5335fb40e2793</citedby><cites>FETCH-LOGICAL-c5122-a6456eb1f4ee0fd545f422d48c25880e837003e0d36f1191369d5335fb40e2793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.200902852$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.200902852$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20217707$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Galusha, Jeremy W.</creatorcontrib><creatorcontrib>Jorgensen, Matthew R.</creatorcontrib><creatorcontrib>Bartl, Michael H.</creatorcontrib><title>Diamond-Structured Titania Photonic-Bandgap Crystals from Biological Templates</title><title>Advanced materials (Weinheim)</title><addtitle>Adv. Mater</addtitle><description>Photonic crystal scales with a diamond‐based lattice from the weevil Lamprocyphus augustus are transformed into a high‐dielectric titania replica by a biotemplating double‐imprint route. Multidirectional optical reflectance spectroscopy of the replicated structure gives an angle‐independent reflection band in the visible spectrum, in agreement with photonic band structure calculations, which reveal the formation of a complete photonic bandgap at visible frequencies.</description><subject>Animals</subject><subject>Biophotonics</subject><subject>Biotemplating</subject><subject>Crystallization</subject><subject>Diamond - chemistry</subject><subject>Photonic crystals</subject><subject>Photons</subject><subject>Titania</subject><subject>Titanium - chemistry</subject><subject>Weevils - chemistry</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0c9v0zAcBXALgVgZXDmi3Dil-_pn7GPbsYE2NiSKJnGx3PibYUjizk4E_e_J1FFx207v8nnv8gh5S2FOAdiJ852bMwADTEv2jMyoZLQUYORzMgPDZWmU0EfkVc4_YWIK1EtyxIDRqoJqRq5Og-ti78uvQxrrYUzoi3UYXB9c8eVHHGIf6nLpen_rtsUq7fLg2lw0KXbFMsQ23obatcUau23rBsyvyYtmAvjmIY_Jt7MP69XH8vL6_NNqcVnWkjJWOiWkwg1tBCI0XgrZCMa80DWTWgNqXgFwBM9VQ6mhXBkvOZfNRgCyyvBj8n6_u03xbsQ82C7kGtvW9RjHbCshDVOa6ydIrpQGUI9LzqkW1IhJzveyTjHnhI3dptC5tLMU7P0t9v4We7hlKrx7mB43HfoD__fDBMwe_A4t7h6Zs4vTz4v_x8t9N-QB_xy6Lv2yquKVtDdX55Z-v-HmYnlmV_wvGSemtA</recordid><startdate>20100105</startdate><enddate>20100105</enddate><creator>Galusha, Jeremy W.</creator><creator>Jorgensen, Matthew R.</creator><creator>Bartl, Michael H.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7SS</scope></search><sort><creationdate>20100105</creationdate><title>Diamond-Structured Titania Photonic-Bandgap Crystals from Biological Templates</title><author>Galusha, Jeremy W. ; Jorgensen, Matthew R. ; Bartl, Michael H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5122-a6456eb1f4ee0fd545f422d48c25880e837003e0d36f1191369d5335fb40e2793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Biophotonics</topic><topic>Biotemplating</topic><topic>Crystallization</topic><topic>Diamond - chemistry</topic><topic>Photonic crystals</topic><topic>Photons</topic><topic>Titania</topic><topic>Titanium - chemistry</topic><topic>Weevils - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galusha, Jeremy W.</creatorcontrib><creatorcontrib>Jorgensen, Matthew R.</creatorcontrib><creatorcontrib>Bartl, Michael H.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Entomology Abstracts (Full archive)</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galusha, Jeremy W.</au><au>Jorgensen, Matthew R.</au><au>Bartl, Michael H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diamond-Structured Titania Photonic-Bandgap Crystals from Biological Templates</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv. Mater</addtitle><date>2010-01-05</date><risdate>2010</risdate><volume>22</volume><issue>1</issue><spage>107</spage><epage>110</epage><pages>107-110</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Photonic crystal scales with a diamond‐based lattice from the weevil Lamprocyphus augustus are transformed into a high‐dielectric titania replica by a biotemplating double‐imprint route. Multidirectional optical reflectance spectroscopy of the replicated structure gives an angle‐independent reflection band in the visible spectrum, in agreement with photonic band structure calculations, which reveal the formation of a complete photonic bandgap at visible frequencies.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>20217707</pmid><doi>10.1002/adma.200902852</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2010-01, Vol.22 (1), p.107-110 |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_745926838 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Biophotonics Biotemplating Crystallization Diamond - chemistry Photonic crystals Photons Titania Titanium - chemistry Weevils - chemistry |
title | Diamond-Structured Titania Photonic-Bandgap Crystals from Biological Templates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A29%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diamond-Structured%20Titania%20Photonic-Bandgap%20Crystals%20from%20Biological%20Templates&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Galusha,%20Jeremy%20W.&rft.date=2010-01-05&rft.volume=22&rft.issue=1&rft.spage=107&rft.epage=110&rft.pages=107-110&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.200902852&rft_dat=%3Cproquest_cross%3E743668006%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733184194&rft_id=info:pmid/20217707&rfr_iscdi=true |